enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euler method - Wikipedia

    en.wikipedia.org/wiki/Euler_method

    The backward Euler method is an implicit method, meaning that the formula for the backward Euler method has + on both sides, so when applying the backward Euler method we have to solve an equation. This makes the implementation more costly.

  3. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    This is the Euler method (or forward Euler method, in contrast with the backward Euler method, to be described below). The method is named after Leonhard Euler who described it in 1768. The Euler method is an example of an explicit method. This means that the new value y n+1 is defined in terms of things that are already known, like y n.

  4. Backward Euler method - Wikipedia

    en.wikipedia.org/wiki/Backward_Euler_method

    This differs from the (forward) Euler method in that the forward method uses (,) in place of (+, +). The backward Euler method is an implicit method: the new approximation y k + 1 {\displaystyle y_{k+1}} appears on both sides of the equation, and thus the method needs to solve an algebraic equation for the unknown y k + 1 {\displaystyle y_{k+1}} .

  5. Trapezoidal rule (differential equations) - Wikipedia

    en.wikipedia.org/wiki/Trapezoidal_rule...

    One possible method for solving this equation is Newton's method. We can use the Euler method to get a fairly good estimate for the solution, which can be used as the initial guess of Newton's method. [2] Cutting short, using only the guess from Eulers method is equivalent to performing Heun's method.

  6. Euler–Maruyama method - Wikipedia

    en.wikipedia.org/wiki/Euler–Maruyama_method

    In Itô calculus, the Euler–Maruyama method (also simply called the Euler method) is a method for the approximate numerical solution of a stochastic differential equation (SDE). It is an extension of the Euler method for ordinary differential equations to stochastic differential equations named after Leonhard Euler and Gisiro Maruyama. The ...

  7. Euler's equations (rigid body dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler's_equations_(rigid...

    In classical mechanics, Euler's rotation equations are a vectorial quasilinear first-order ordinary differential equation describing the rotation of a rigid body, using a rotating reference frame with angular velocity ω whose axes are fixed to the body. They are named in honour of Leonhard Euler. Their general vector form is

  8. Euler's differential equation - Wikipedia

    en.wikipedia.org/wiki/Euler's_differential_equation

    In mathematics, Euler's differential equation is a first-order non-linear ordinary differential equation, named after Leonhard Euler. It is given by: [ 1 ] d y d x + a 0 + a 1 y + a 2 y 2 + a 3 y 3 + a 4 y 4 a 0 + a 1 x + a 2 x 2 + a 3 x 3 + a 4 x 4 = 0 {\displaystyle {\frac {dy}{dx}}+{\frac {\sqrt {a_{0}+a_{1}y+a_{2}y^{2}+a_{3}y^{3}+a_{4}y^{4 ...

  9. Cauchy–Euler equation - Wikipedia

    en.wikipedia.org/wiki/Cauchy–Euler_equation

    In mathematics, an Euler–Cauchy equation, or Cauchy–Euler equation, or simply Euler's equation, is a linear homogeneous ordinary differential equation with variable coefficients. It is sometimes referred to as an equidimensional equation. Because of its particularly simple equidimensional structure, the differential equation can be solved ...