Search results
Results from the WOW.Com Content Network
In computer science, an integer literal is a kind of literal for an integer whose value is directly represented in source code.For example, in the assignment statement x = 1, the string 1 is an integer literal indicating the value 1, while in the statement x = 0x10 the string 0x10 is an integer literal indicating the value 16, which is represented by 10 in hexadecimal (indicated by the 0x prefix).
Literals are often used to initialize variables; for example, in the following, 1 is an integer literal and the three letter string in "cat" is a string literal: int a = 1 ; string s = "cat" ; In lexical analysis , literals of a given type are generally a token type, with a grammar rule, like "a string of digits " for an integer literal.
Python supports normal floating point numbers, which are created when a dot is used in a literal (e.g. 1.1), when an integer and a floating point number are used in an expression, or as a result of some mathematical operations ("true division" via the / operator, or exponentiation with a negative exponent).
For example, in the Python programming language, int represents an arbitrary-precision integer which has the traditional numeric operations such as addition, subtraction, and multiplication. However, in the Java programming language , the type int represents the set of 32-bit integers ranging in value from −2,147,483,648 to 2,147,483,647 ...
Integer literals can be written as regular Arabic numerals, consisting of a sequence of digits and with negation indicated by a minus sign before the value. However, most programming languages disallow use of commas or spaces for digit grouping. Examples of integer literals are: 42; 10000-233000
The actual sizes of short int, int, and long int are available as the constants short max int, max int, and long max int etc. ^b Commonly used for characters. ^c The ALGOL 68, C and C++ languages do not specify the exact width of the integer types short , int , long , and ( C99 , C++11 ) long long , so they are implementation-dependent.
Integer addition, for example, can be performed as a single machine instruction, and some offer specific instructions to process sequences of characters with a single instruction. [7] But the choice of primitive data type may affect performance, for example it is faster using SIMD operations and data types to operate on an array of floats.
Constant folding is the process of recognizing and evaluating constant expressions at compile time rather than computing them at runtime. Terms in constant expressions are typically simple literals, such as the integer literal 2, but they may also be variables whose values are known at compile time.