enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Christofides algorithm - Wikipedia

    en.wikipedia.org/wiki/Christofides_algorithm

    The union of the tree and the matching is a cycle, with no possible shortcuts, and with weight approximately 3n/2. However, the optimal solution uses the edges of weight 1 + ε together with two weight-1 edges incident to the endpoints of the path, and has total weight (1 + ε)(n − 2) + 2, close to n for small values of ε. Hence we obtain an ...

  3. Branching factor - Wikipedia

    en.wikipedia.org/wiki/Branching_factor

    The higher the branching factor, the faster this "explosion" occurs. The branching factor can be cut down by a pruning algorithm. The average branching factor can be quickly calculated as the number of non-root nodes (the size of the tree, minus one; or the number of edges) divided by the number of non-leaf nodes (the number of nodes with ...

  4. Factor graph - Wikipedia

    en.wikipedia.org/wiki/Factor_graph

    with a corresponding factor graph shown on the right. Observe that the factor graph has a cycle. If we merge (,) (,) into a single factor, the resulting factor graph will be a tree. This is an important distinction, as message passing algorithms are usually exact for trees, but only approximate for graphs with cycles.

  5. Factorization of polynomials over finite fields - Wikipedia

    en.wikipedia.org/wiki/Factorization_of...

    Algorithm: SFF (Square-Free Factorization) Input: A monic polynomial f in F q [x] where q = p m Output: Square-free factorization of f R ← 1 # Make w be the product (without multiplicity) of all factors of f that have # multiplicity not divisible by p c ← gcd(f, f′) w ← f/c # Step 1: Identify all factors in w i ← 1 while w ≠ 1 do y ...

  6. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    The solution is to combine the multiple equations into a single linear Diophantine equation with a much larger modulus M that is the product of all the individual moduli m i, and define M i as =. Thus, each M i is the product of all the moduli except m i. The solution depends on finding N new numbers h i such that

  7. Factorization of polynomials - Wikipedia

    en.wikipedia.org/wiki/Factorization_of_polynomials

    In mathematics and computer algebra, factorization of polynomials or polynomial factorization expresses a polynomial with coefficients in a given field or in the integers as the product of irreducible factors with coefficients in the same domain. Polynomial factorization is one of the fundamental components of computer algebra systems.

  8. AOL Mail

    mail.aol.com/d?reason=invalid_cred

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Graph factorization - Wikipedia

    en.wikipedia.org/wiki/Graph_factorization

    A k-factor of a graph is a spanning k-regular subgraph, and a k-factorization partitions the edges of the graph into disjoint k-factors. A graph G is said to be k-factorable if it admits a k-factorization. In particular, a 1-factor is a perfect matching, and a 1-factorization of a k-regular graph is a proper edge coloring with k colors.