enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Upper and lower bounds - Wikipedia

    en.wikipedia.org/wiki/Upper_and_lower_bounds

    The set S = {42} has 42 as both an upper bound and a lower bound; all other numbers are either an upper bound or a lower bound for that S. Every subset of the natural numbers has a lower bound since the natural numbers have a least element (0 or 1, depending on convention). An infinite subset of the natural numbers cannot be bounded from above.

  3. Interval arithmetic - Wikipedia

    en.wikipedia.org/wiki/Interval_arithmetic

    The main objective of interval arithmetic is to provide a simple way of calculating upper and lower bounds of a function's range in one or more variables. These endpoints are not necessarily the true supremum or infimum of a range since the precise calculation of those values can be difficult or impossible; the bounds only need to contain the function's range as a subset.

  4. Nested intervals - Wikipedia

    en.wikipedia.org/wiki/Nested_intervals

    The construction follows a recursion by starting with any number , that is not an upper bound (e.g. =, where and an arbitrary upper bound of ). Given I n = [ a n , b n ] {\displaystyle I_{n}=[a_{n},b_{n}]} for some n ∈ N {\displaystyle n\in \mathbb {N} } one can compute the midpoint m n := a n + b n 2 {\displaystyle m_{n}:={\frac {a_{n}+b_{n ...

  5. Infimum and supremum - Wikipedia

    en.wikipedia.org/wiki/Infimum_and_supremum

    There is a corresponding greatest-lower-bound property; an ordered set possesses the greatest-lower-bound property if and only if it also possesses the least-upper-bound property; the least-upper-bound of the set of lower bounds of a set is the greatest-lower-bound, and the greatest-lower-bound of the set of upper bounds of a set is the least ...

  6. Least-upper-bound property - Wikipedia

    en.wikipedia.org/wiki/Least-upper-bound_property

    A real number x is the least upper bound (or supremum) for S if x is an upper bound for S and x ≤ y for every upper bound y of S. The least-upper-bound property states that any non-empty set of real numbers that has an upper bound must have a least upper bound in real numbers.

  7. Ramsey's theorem - Wikipedia

    en.wikipedia.org/wiki/Ramsey's_theorem

    (The first exponential lower bound was obtained by Paul Erdős using the probabilistic method.) However, there is a vast gap between the tightest lower bounds and the tightest upper bounds. There are also very few numbers r and s for which we know the exact value of R(r, s). Computing a lower bound L for R(r, s) usually requires exhibiting a ...

  8. Rough set - Wikipedia

    en.wikipedia.org/wiki/Rough_set

    The tuple _, ¯ composed of the lower and upper approximation is called a rough set; thus, a rough set is composed of two crisp sets, one representing a lower boundary of the target set , and the other representing an upper boundary of the target set .

  9. Minimum overlap problem - Wikipedia

    en.wikipedia.org/wiki/Minimum_overlap_problem

    This problem can be found amongst the problems proposed by Paul Erdős in combinatorial number theory, known by English speakers as the Minimum overlap problem.It was first formulated in the 1955 article Some remarks on number theory [3] (in Hebrew) in Riveon Lematematica, and has become one of the classical problems described by Richard K. Guy in his book Unsolved problems in number theory.