Search results
Results from the WOW.Com Content Network
In 2013 researchers discovered that asymmetrical fullerenes formed from larger structures settle into stable fullerenes. The synthesized substance was a particular metallofullerene consisting of 84 carbon atoms with two additional carbon atoms and two yttrium atoms inside the cage.
The buckminsterfullerenes, or usually just fullerenes or buckyballs for short, were discovered in 1985 by a team of scientists from Rice University and the University of Sussex, three of whom were awarded the 1996 Nobel Prize in Chemistry. They are named for the resemblance to the geodesic structures devised by Richard Buckminster "Bucky ...
It is a cage-like fused-ring structure which resembles a rugby ball, made of 25 hexagons and 12 pentagons, with a carbon atom at the vertices of each polygon and a bond along each polygon edge. A related fullerene molecule, named buckminsterfullerene (or C 60 fullerene) consists of 60 carbon atoms.
Fullerenes can react with halogens. The preferred pattern for addition C 60 is calculated to be 1,9- for small groups and 1,7- for bulky groups. C 60 F 60 is a possible structure. C 60 reacts with Cl 2 gas at 250 °C to a material with average composition C 60 Cl 24, although only C 60 can be detected by mass spectrometry. [14]
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
Besides unfilled fullerenes, endohedral metallofullerenes develop with different cage sizes like La@C 60 or La@C 82 and as different isomer cages. Aside from the dominant presence of mono-metal cages, numerous di-metal endohedral complexes and the tri-metal carbide fullerenes like Sc 3 C 2 @C 80 were also isolated. In 1999 a discovery drew ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
A network solid or covalent network solid (also called atomic crystalline solids or giant covalent structures) [1] [2] is a chemical compound (or element) in which the atoms are bonded by covalent bonds in a continuous network extending throughout the material.