Search results
Results from the WOW.Com Content Network
Phenylacetylene is a prototypical terminal acetylene, undergoing many reactions expected of that functional group. It undergoes semihydrogenation over Lindlar catalyst to give styrene. In the presence of base and copper(II) salts, it undergoes oxidative coupling to give diphenylbutadiyne. [6]
The Sonogashira reaction is a cross-coupling reaction used in organic synthesis ... Phenylacetylene was proven to form Pd monoacetylide complex D as well as Pd ...
The reaction was discovered in 1884 by Swiss chemist Traugott Sandmeyer, when he attempted to synthesize phenylacetylene from benzenediazonium chloride and copper(I) acetylide. Instead, the main product he isolated was chlorobenzene . [ 5 ]
The Hay coupling is variant of the Glaser coupling. It relies on the TMEDA complex of copper(I) chloride to activate the terminal alkyne. Oxygen (air) is used in the Hay variant to oxidize catalytic amounts of Cu(I) to Cu(II) throughout the reaction, as opposed to a stoichiometric amount of Cu(II) used in the Eglington variant. [7]
Yet another method involves the coupling of iodobenzene and the copper salt of phenylacetylene in the Castro-Stephens coupling. The related Sonogashira coupling involves the coupling of iodobenzene and phenylacetylene. Diphenylacetylene is a planar molecule. The central C≡C distance is 119.8 picometers. [1]
Trimethylsilylacetylene is commercially available. It may also be prepared in a manner similar to other silyl compounds: deprotonation of acetylene with a Grignard reagent, followed by reaction with trimethylsilyl chloride. [3] Trimethylsilylacetylene is a precursor to 1,4-bis(trimethylsilyl)buta-1,3-diyne, a protected form of 1,3-butadiyne. [4]
Kumada coupling reaction, M = catalyst, usually based on Ni or Pd complexes. In organic chemistry, the Kumada coupling is a type of cross coupling reaction, useful for generating carbon–carbon bonds by the reaction of a Grignard reagent and an organic halide.
The reaction proceeds by formation of vinyl alcohol, which tautomerizes to form the aldehyde. This reaction was once a major industrial process but it has been displaced by the Wacker process. This reaction occurs in nature, the catalyst being acetylene hydratase. Hydration of phenylacetylene gives acetophenone: [15]