Search results
Results from the WOW.Com Content Network
Photosynthesis systems function by measuring gas exchange of leaves. Atmospheric carbon dioxide is taken up by leaves in the process of photosynthesis, where CO 2 is used to generate sugars in a molecular pathway known as the Calvin cycle. This draw-down of CO 2 induces more atmospheric CO 2 to diffuse through stomata into the air spaces of the ...
This is because not all of the water that is taken by the plant is used for transpiration (water taken might be used for photosynthesis or by the cells to maintain turgidity). To measure transpiration rate directly, rather than the rate of water uptake, utilize a scientific instrument which quantifies water transfer at the leaves. However, in ...
Photosynthesis systems use infrared gas analyzers (IRGAS) for measuring photosynthesis. CO 2 concentration changes in leaf chambers are measured to provide carbon assimilation values for leaves or whole plants. Research has shown that the rate of photosynthesis is directly related to the amount of carbon assimilated by the plant.
The leaf is the primary site of photosynthesis in plants. There are four main factors influencing photosynthesis and several corollary factors. The four main are: [112] Light irradiance and wavelength; Water absorption; Carbon dioxide concentration; Temperature. Total photosynthesis is limited by a range of environmental factors.
The following is a breakdown of the energetics of the photosynthesis process from Photosynthesis by Hall and Rao: [6]. Starting with the solar spectrum falling on a leaf, 47% lost due to photons outside the 400–700 nm active range (chlorophyll uses photons between 400 and 700 nm, extracting the energy of one 700 nm photon from each one)
Chlorophyll fluorescence appears to be a measure of photosynthesis, but this is an over-simplification. Fluorescence can measure the efficiency of PSII photochemistry, which can be used to estimate the rate of linear electron transport by multiplying by the light intensity.
Photosynthetic capacity (A max) is a measure of the maximum rate at which leaves are able to fix carbon during photosynthesis. It is typically measured as the amount of carbon dioxide that is fixed per metre squared per second, for example as μmol m −2 sec −1.
The fraction of absorbed photosynthetically active radiation (FAPAR, sometimes also noted fAPAR or fPAR) is the fraction of the incoming solar radiation in the photosynthetically active radiation spectral region that is absorbed by a photosynthetic organism, typically describing the light absorption across an integrated plant canopy.