Search results
Results from the WOW.Com Content Network
An optical sensor converts light rays into electronic signals. It measures the physical quantity of light and then translates it into a form readable by an instrument. An optical sensor is generally part of a larger system that integrates a source of light, a measuring device, and the optical sensor. This is often connected to an electrical ...
Electronic light sensors. Optoelectronics (or optronics) is the study and application of electronic devices and systems that find, detect and control light, usually considered a sub-field of photonics. In this context, light often includes invisible forms of radiation such as gamma rays, X-rays, ultraviolet and infrared, in addition to visible ...
A chemical sensor array is a sensor architecture with multiple sensor components that create a pattern for analyte detection from the additive responses of individual sensor components. There exist several types of chemical sensor arrays including electronic, optical, acoustic wave, and potentiometric devices.
Electro–optics is a branch of electrical engineering, electronic engineering, materials science, and material physics involving components, electronic devices such as lasers, laser diodes, LEDs, waveguides, etc. which operate by the propagation and interaction of light with various tailored materials.
On the left, the main IR sensor (100 km range), on the right a TV/IR identification sensor with laser rangefinder (40 km range) An electro-optical targeting system (EOTS), is a system employed to track and locate targets in aerial warfare. [1] It can use charge-coupled device TV cameras, laser rangefinders and laser designators.
The electro-optic effect describes two phenomena, the change of absorption and the change in the refractive index of a material, resulting from the application of a DC or an electric field with much lower frequency than the optical carrier. This is caused by forces that distort the position, orientation, or shape of the molecules constituting ...
Microoptoelectromechanical systems (MOEMS), also known as optical MEMS, are integrations of mechanical, optical, and electrical systems that involve sensing or manipulating optical signals at a very small size. MOEMS includes a wide variety of devices, for example optical switch, optical cross-connect, tunable VCSEL, microbolometers.
In three-sensor camera systems that use separate sensors to resolve the red, green, and blue components of the image in conjunction with beam splitter prisms, the three CMOS sensors can be identical, whereas most splitter prisms require that one of the CCD sensors has to be a mirror image of the other two to read out the image in a compatible ...