enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Brahmagupta's formula - Wikipedia

    en.wikipedia.org/wiki/Brahmagupta's_formula

    This formula generalizes Heron's formula for the area of a triangle. A triangle may be regarded as a quadrilateral with one side of length zero. From this perspective, as d approaches zero, a cyclic quadrilateral converges into a cyclic triangle (all triangles are cyclic), and Brahmagupta's formula simplifies to Heron's formula.

  3. Cyclic quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Cyclic_quadrilateral

    A formula for the area K of a cyclic orthodiagonal quadrilateral in terms of the four sides is obtained directly when combining Ptolemy's theorem and the formula for the area of an orthodiagonal quadrilateral. The result is [29]: p.222 = (+).

  4. Heron's formula - Wikipedia

    en.wikipedia.org/wiki/Heron's_formula

    Heron's formula is a special case of Brahmagupta's formula for the area of a cyclic quadrilateral. Heron's formula and Brahmagupta's formula are both special cases of Bretschneider's formula for the area of a quadrilateral. Heron's formula can be obtained from Brahmagupta's formula or Bretschneider's formula by setting one of the sides of the ...

  5. Tangential quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Tangential_quadrilateral

    A tangential quadrilateral with its incircle. In Euclidean geometry, a tangential quadrilateral (sometimes just tangent quadrilateral) or circumscribed quadrilateral is a convex quadrilateral whose sides all can be tangent to a single circle within the quadrilateral.

  6. Area - Wikipedia

    en.wikipedia.org/wiki/Area

    The formula for the surface area of a sphere is more difficult to derive: because a sphere has nonzero Gaussian curvature, it cannot be flattened out. The formula for the surface area of a sphere was first obtained by Archimedes in his work On the Sphere and Cylinder. The formula is: [6] A = 4πr 2 (sphere), where r is the radius of the sphere.

  7. Brahmagupta theorem - Wikipedia

    en.wikipedia.org/wiki/Brahmagupta_theorem

    In geometry, Brahmagupta's theorem states that if a cyclic quadrilateral is orthodiagonal (that is, has perpendicular diagonals), then the perpendicular to a side from the point of intersection of the diagonals always bisects the opposite side. [1] It is named after the Indian mathematician Brahmagupta (598-668). [2]

  8. Bretschneider's formula - Wikipedia

    en.wikipedia.org/wiki/Bretschneider's_formula

    Bretschneider's formula generalizes Brahmagupta's formula for the area of a cyclic quadrilateral, which in turn generalizes Heron's formula for the area of a triangle.. The trigonometric adjustment in Bretschneider's formula for non-cyclicality of the quadrilateral can be rewritten non-trigonometrically in terms of the sides and the diagonals e and f to give [2] [3]

  9. Quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Quadrilateral

    The quadrilateral with given side lengths that has the maximum area is the cyclic quadrilateral. [43] Of all convex quadrilaterals with given diagonals, the orthodiagonal quadrilateral has the largest area. [38]: p.119 This is a direct consequence of the fact that the area of a convex quadrilateral satisfies