enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Curve of constant width - Wikipedia

    en.wikipedia.org/wiki/Curve_of_constant_width

    Additionally, each supporting line that touches another point of the arc must be tangent at that point to a circle of radius containing the entire arc; this requirement prevents the curvature of the arc from being less than that of the circle. The completed body of constant width is then the intersection of the interiors of an infinite family ...

  3. Euler–Bernoulli beam theory - Wikipedia

    en.wikipedia.org/wiki/Euler–Bernoulli_beam_theory

    These assumptions imply that the beam bends into an arc of a circle of radius (see Figure 1) and that the neutral surface does not change in length during the deformation. [ 5 ] Let d x {\displaystyle \mathrm {d} x} be the length of an element of the neutral surface in the undeformed state.

  4. Right circular cylinder - Wikipedia

    en.wikipedia.org/wiki/Right_circular_cylinder

    The area of the base of a cylinder is the area of a circle (in this case we define that the circle has a radius with measure ): B = π r 2 {\displaystyle B=\pi r^{2}} . To calculate the total area of a right circular cylinder, you simply add the lateral area to the area of the two bases:

  5. Radius of curvature - Wikipedia

    en.wikipedia.org/wiki/Radius_of_curvature

    Radius of curvature and center of curvature. In differential geometry, the radius of curvature, R, is the reciprocal of the curvature. For a curve, it equals the radius of the circular arc which best approximates the curve at that point. For surfaces, the radius of curvature is the radius of a circle that best fits a normal section or ...

  6. Gauss circle problem - Wikipedia

    en.wikipedia.org/wiki/Gauss_circle_problem

    Consider a circle in with center at the origin and radius . Gauss's circle problem asks how many points there are inside this circle of the form ( m , n ) {\displaystyle (m,n)} where m {\displaystyle m} and n {\displaystyle n} are both integers.

  7. Torsion constant - Wikipedia

    en.wikipedia.org/wiki/Torsion_constant

    In 1820, the French engineer A. Duleau derived analytically that the torsion constant of a beam is identical to the second moment of area normal to the section J zz, which has an exact analytic equation, by assuming that a plane section before twisting remains planar after twisting, and a diameter remains a straight line. Unfortunately, that ...

  8. Area of a circle - Wikipedia

    en.wikipedia.org/wiki/Area_of_a_circle

    Let the length of A′B be c n, which we call the complement of s n; thus c n 2 +s n 2 = (2r) 2. Let C bisect the arc from A to B, and let C′ be the point opposite C on the circle. Thus the length of CA is s 2n, the length of C′A is c 2n, and C′CA is itself a right triangle on diameter CC.

  9. Sagitta (geometry) - Wikipedia

    en.wikipedia.org/wiki/Sagitta_(geometry)

    In the following equations, denotes the sagitta (the depth or height of the arc), equals the radius of the circle, and the length of the chord spanning the base of the arc. As 1 2 l {\displaystyle {\tfrac {1}{2}}l} and r − s {\displaystyle r-s} are two sides of a right triangle with r {\displaystyle r} as the hypotenuse , the Pythagorean ...