enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    Euclid's algorithm is widely used in practice, especially for small numbers, due to its simplicity. [118] For comparison, the efficiency of alternatives to Euclid's algorithm may be determined. One inefficient approach to finding the GCD of two natural numbers a and b is to calculate all their common divisors; the GCD is then the largest common ...

  3. Lamé's theorem - Wikipedia

    en.wikipedia.org/wiki/Lamé's_theorem

    Lamé's Theorem is the result of Gabriel Lamé's analysis of the complexity of the Euclidean algorithm.Using Fibonacci numbers, he proved in 1844 [1] [2] that when looking for the greatest common divisor (GCD) of two integers a and b, the algorithm finishes in at most 5k steps, where k is the number of digits (decimal) of b.

  4. Euclid's theorem - Wikipedia

    en.wikipedia.org/wiki/Euclid's_theorem

    Several variations on Euclid's proof exist, including the following: The factorial n! of a positive integer n is divisible by every integer from 2 to n, as it is the product of all of them. Hence, n! + 1 is not divisible by any of the integers from 2 to n, inclusive (it gives a remainder of 1 when divided by each).

  5. Extended Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Extended_Euclidean_algorithm

    A second difference lies in the bound on the size of the Bézout coefficients provided by the extended Euclidean algorithm, which is more accurate in the polynomial case, leading to the following theorem. If a and b are two nonzero polynomials, then the extended Euclidean algorithm produces the unique pair of polynomials (s, t) such that

  6. Greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Greatest_common_divisor

    The binary GCD algorithm is a variant of Euclid's algorithm that is specially adapted to the binary representation of the numbers, which is used in most computers. The binary GCD algorithm differs from Euclid's algorithm essentially by dividing by two every even number that is encountered during the computation.

  7. Polynomial greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Polynomial_greatest_common...

    This algorithm differs from Euclid's algorithm by a few more computations done at each iteration of the loop. It is therefore called extended GCD algorithm. Another difference with Euclid's algorithm is that it also uses the quotient, denoted "quo", of the Euclidean division instead of only the remainder. This algorithm works as follows.

  8. Euclidean division - Wikipedia

    en.wikipedia.org/wiki/Euclidean_division

    The theorem is frequently referred to as the division algorithm (although it is a theorem and not an algorithm), because its proof as given below lends itself to a simple division algorithm for computing q and r (see the section Proof for more). Division is not defined in the case where b = 0; see division by zero.

  9. Formulas for generating Pythagorean triples - Wikipedia

    en.wikipedia.org/wiki/Formulas_for_generating...

    Michael Stifel published the following method in 1544. [3] [4] Consider the sequence of mixed numbers,,,, … with = + +.To calculate a Pythagorean triple, take any term of this sequence and convert it to an improper fraction (for mixed number , the corresponding improper fraction is ).