Search results
Results from the WOW.Com Content Network
A loss-of-coolant accident (LOCA) is a mode of failure for a nuclear reactor; if not managed effectively, the results of a LOCA could result in reactor core damage. Each nuclear plant's emergency core cooling system (ECCS) exists specifically to deal with a LOCA. Nuclear reactors generate heat internally; to remove this heat and convert it into ...
In a large nuclear reactor, a loss of coolant accident can damage the core: for example, at Three Mile Island Nuclear Generating Station a recent shutdown PWR reactor was left for a length of time without cooling water. As a result, the nuclear fuel was damaged, and the core partially melted. The removal of the decay heat is a significant ...
Pickering nuclear Reactor 2, Pickering, Ontario, Canada: LOCA loss of coolant accident. Pressure tube, that holds the fuel bundles, ruptured due to hydriding. All four reactors re-tubed with new materials (Zr-2.5%Nb) over ten years. [24] 0: 1 billion Canadian dollars (1983-1993). [25] March 1986: Bruce nuclear Reactor 2, Bruce County, Ontario ...
Soviet submarine K-19 reactor accident 1961, July 4 More than 30 people were over-exposed to radiation when the starboard reactor cooling system failed and the reactor temp rose uncontrollably. Emergency repairs ordered by the captain successfully cooled the reactor and avoided meltdown, but exposed the workers to high levels of radiation. [17] 8
At the time of the quake, Reactor 4 had been de-fueled while 5 and 6 were in cold shutdown for planned maintenance. [33] Immediately after the earthquake, the remaining reactors 1–3 shut down automatically, and emergency generators came online to control electronics and coolant systems.
A core damage accident is caused by the loss of sufficient cooling for the nuclear fuel within the reactor core. The reason may be one of several factors, including a loss-of-pressure-control accident, a loss-of-coolant accident (LOCA), an uncontrolled power excursion. Failures in control systems may cause a series of events resulting in loss ...
In nuclear reactor operation, most heat is generated by nuclear fission, but over 6% comes from radioactive decay heat, which continues after the reactor shuts down. Continued coolant circulation is essential to prevent core overheating or a core meltdown. [15]
Poorly placed temperature sensors indicated the reactor was cooling rather than heating. The excess heat led to the failure of a nuclear cartridge, which in turn allowed uranium and irradiated graphite to react with air. The resulting fire burned for days, damaging a significant portion of the reactor core.