enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Baryon asymmetry - Wikipedia

    en.wikipedia.org/wiki/Baryon_asymmetry

    Neither the standard model of particle physics nor the theory of general relativity provides a known explanation for why this should be so, and it is a natural assumption that the universe is neutral with all conserved charges. [3] The Big Bang should have produced equal amounts of matter and antimatter. Since this does not seem to have been ...

  3. Baryogenesis - Wikipedia

    en.wikipedia.org/wiki/Baryogenesis

    This imbalance has to be exceptionally small, on the order of 1 in every 1 630 000 000 (≈ 2 × 10 9) particles a small fraction of a second after the Big Bang. [4] After most of the matter and antimatter was annihilated, what remained was all the baryonic matter in the current universe, along with a much greater number of bosons.

  4. Flatness problem - Wikipedia

    en.wikipedia.org/wiki/Flatness_problem

    The local geometry of the universe is determined by whether the relative density Ω is less than, equal to or greater than 1. From top to bottom: a spherical universe with greater than critical density (Ω>1, k>0); a hyperbolic, underdense universe (Ω<1, k<0); and a flat universe with exactly the critical density (Ω=1, k=0).

  5. Right again, Einstein! Study shows how antimatter ... - AOL

    www.aol.com/news/again-einstein-study-shows...

    There appears to be very little antimatter - and on Earth almost none. ... Scientists remain puzzled by antimatter's scarcity in the observable universe. For instance, there is no indication of ...

  6. Here’s why the universe has more matter than antimatter - AOL

    www.aol.com/why-universe-more-matter-antimatter...

    All the particles that make up the matter around us, such electrons and protons, have antimatter versions which are nearly identical, but with mirrored properties such as the opposite electric charge.

  7. Astroparticle physics - Wikipedia

    en.wikipedia.org/wiki/Astroparticle_physics

    Another question for astroparticle physicists is why is there so much more matter than antimatter in the universe today. Baryogenesis is the term for the hypothetical processes that produced the unequal numbers of baryons and antibaryons in the early universe, which is why the universe is made of matter today, and not antimatter.

  8. Gravitational interaction of antimatter - Wikipedia

    en.wikipedia.org/wiki/Gravitational_interaction...

    The CPT theorem implies that the difference between the properties of a matter particle and those of its antimatter counterpart is completely described by C-inversion. Since this C-inversion does not affect gravitational mass, the CPT theorem predicts that the gravitational mass of antimatter is the same as that of ordinary matter. [5]

  9. Leptogenesis - Wikipedia

    en.wikipedia.org/wiki/Leptogenesis

    [1] The lepton and baryon asymmetries affect the much better understood Big Bang nucleosynthesis at later times, during which light atomic nuclei began to form. Successful synthesis of the light elements requires that there be an imbalance in the number of baryons and antibaryons to one part in a billion when the universe is a few minutes old. [2]