Search results
Results from the WOW.Com Content Network
In mathematics, the Kronecker product, sometimes denoted by ⊗, is an operation on two matrices of arbitrary size resulting in a block matrix.It is a specialization of the tensor product (which is denoted by the same symbol) from vectors to matrices and gives the matrix of the tensor product linear map with respect to a standard choice of basis.
Let V be a representation of a group G; or more generally, let V be a vector space with a set of linear endomorphisms acting on it. In general, a vector space acted on by a set of linear endomorphisms is said to be simple (or irreducible) if the only invariant subspaces for those operators are zero and the vector space itself; a semisimple representation then is a direct sum of simple ...
The direct sum is also commutative up to isomorphism, i.e. for any algebraic structures and of the same kind. The direct sum of finitely many abelian groups, vector spaces, or modules is canonically isomorphic to the corresponding direct product. This is false, however, for some algebraic objects, like nonabelian groups.
The subspace V × {0} of V ⊕ W is isomorphic to V and is often identified with V; similarly for {0} × W and W. (See internal direct sum below.) With this identification, every element of V ⊕ W can be written in one and only one way as the sum of an element of V and an element of W. The dimension of V ⊕ W is equal to the sum of the ...
Another operation, which is used less often, is the direct sum (denoted by ⊕). The Kronecker sum is also denoted ⊕; the context should make the usage clear. The direct sum of any pair of matrices A of size m × n and B of size p × q is a matrix of size (m + p) × (n + q) defined as: [6] [2]
(That is, if W is an invariant subspace, then there is another invariant subspace P such that V is the direct sum of W and P.) If g {\displaystyle {\mathfrak {g}}} is a finite-dimensional semisimple Lie algebra over a field of characteristic zero and V is finite-dimensional, then V is semisimple; this is Weyl's complete reducibility theorem . [ 4 ]
If V is the direct sum of its weight spaces V = ⨁ λ ∈ h ∗ V λ {\displaystyle V=\bigoplus _{\lambda \in {\mathfrak {h}}^{*}}V_{\lambda }} then V is called a weight module ; this corresponds to there being a common eigenbasis (a basis of simultaneous eigenvectors) for all the represented elements of the algebra, i.e., to there being ...
The group operation in the external direct sum is pointwise multiplication, as in the usual direct product. This subset does indeed form a group, and for a finite set of groups {H i} the external direct sum is equal to the direct product. If G = ΣH i, then G is isomorphic to Σ E {H i}. Thus, in a sense, the direct sum is an "internal ...