enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Suzuki groups - Wikipedia

    en.wikipedia.org/wiki/Suzuki_groups

    The group Sz(2) is solvable and is the Frobenius group of order 20. The Suzuki groups Sz(q) have orders q 2 (q 2 +1)(q−1). These groups have orders divisible by 5, but not by 3. The Schur multiplier is trivial for n>1, Klein 4-group for n=1, i. e. Sz(8). The outer automorphism group is cyclic of order 2n+1, given by automorphisms of the field ...

  3. Generating set of a group - Wikipedia

    en.wikipedia.org/wiki/Generating_set_of_a_group

    The 5th roots of unity in the complex plane form a group under multiplication. Each non-identity element generates the group. In abstract algebra, a generating set of a group is a subset of the group set such that every element of the group can be expressed as a combination (under the group operation) of finitely many elements of the subset and their inverses.

  4. Classification of finite simple groups - Wikipedia

    en.wikipedia.org/wiki/Classification_of_finite...

    In mathematics, the classification of finite simple groups (popularly called the enormous theorem [1] [2]) is a result of group theory stating that every finite simple group is either cyclic, or alternating, or belongs to a broad infinite class called the groups of Lie type, or else it is one of twenty-six exceptions, called sporadic (the Tits group is sometimes regarded as a sporadic group ...

  5. Cayley table - Wikipedia

    en.wikipedia.org/wiki/Cayley_table

    The Cayley table tells us whether a group is abelian. Because the group operation of an abelian group is commutative, a group is abelian if and only if its Cayley table's values are symmetric along its diagonal axis. The group {1, −1} above and the cyclic group of order 3 under ordinary multiplication are both examples of abelian groups, and ...

  6. Character table - Wikipedia

    en.wikipedia.org/wiki/Character_table

    The irreducible complex characters of a finite group form a character table which encodes much useful information about the group G in a concise form. Each row is labelled by an irreducible character and the entries in the row are the values of that character on any representative of the respective conjugacy class of G (because characters are class functions).

  7. Group theory - Wikipedia

    en.wikipedia.org/wiki/Group_theory

    Group theory has three main historical sources: number theory, the theory of algebraic equations, and geometry.The number-theoretic strand was begun by Leonhard Euler, and developed by Gauss's work on modular arithmetic and additive and multiplicative groups related to quadratic fields.

  8. Generator (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Generator_(mathematics)

    The generator of any continuous symmetry implied by Noether's theorem, the generators of a Lie group being a special case. In this case, a generator is sometimes called a charge or Noether charge, examples include: angular momentum as the generator of rotations, [3] linear momentum as the generator of translations, [3]

  9. Special unitary group - Wikipedia

    en.wikipedia.org/wiki/Special_unitary_group

    For a field F, the generalized special unitary group over F, SU(p, q; F), is the group of all linear transformations of determinant 1 of a vector space of rank n = p + q over F which leave invariant a nondegenerate, Hermitian form of signature (p, q). This group is often referred to as the special unitary group of signature p q over F.