Search results
Results from the WOW.Com Content Network
Different texts (and even different parts of this article) adopt slightly different definitions for the negative binomial distribution. They can be distinguished by whether the support starts at k = 0 or at k = r, whether p denotes the probability of a success or of a failure, and whether r represents success or failure, [1] so identifying the specific parametrization used is crucial in any ...
The multinomial distribution, a generalization of the binomial distribution. The multivariate normal distribution, a generalization of the normal distribution. The multivariate t-distribution, a generalization of the Student's t-distribution. The negative multinomial distribution, a generalization of the negative binomial distribution.
When one or more parameter(s) of a distribution are random variables, the compound distribution is the marginal distribution of the variable. Examples: If X | N is a binomial (N,p) random variable, where parameter N is a random variable with negative-binomial (m, r) distribution, then X is distributed as a negative-binomial (m, r/(p + qr)).
In probability and statistics, an urn problem is an idealized mental exercise in which some objects of real interest (such as atoms, people, cars, etc.) are represented as colored balls in an urn or other container. One pretends to remove one or more balls from the urn; the goal is to determine the probability of drawing one color or another ...
In probability theory and statistics, the binomial distribution with parameters n and p is the discrete probability distribution of the number of successes in a sequence of n independent experiments, each asking a yes–no question, and each with its own Boolean-valued outcome: success (with probability p) or failure (with probability q = 1 − p).
Beta-binomial distribution; Beta-binomial model; Beta distribution; Beta function – for incomplete beta function; Beta negative binomial distribution; Beta prime distribution; Beta rectangular distribution; Beverton–Holt model; Bhatia–Davis inequality; Bhattacharya coefficient – redirects to Bhattacharyya distance; Bias (statistics ...
Different texts (and even different parts of this article) adopt slightly different definitions for the negative binomial distribution. They can be distinguished by whether the support starts at k = 0 or at k = r, whether p denotes the probability of a success or of a failure, and whether r represents success or failure, [1] so identifying the specific parametrization used is crucial in any ...
The answer to this problem depends on the choice of prior for . One can proceed using a proper prior over the positive integers, e.g., the Poisson or Negative Binomial distribution, where a closed formula for the posterior mean and posterior variance can be obtained. [15] Below, we will instead adopt a bounded uniform prior.