Search results
Results from the WOW.Com Content Network
A finite-state machine can be used as a representation of a Markov chain. Assuming a sequence of independent and identically distributed input signals (for example, symbols from a binary alphabet chosen by coin tosses), if the machine is in state y at time n , then the probability that it moves to state x at time n + 1 depends only on the ...
A discrete-time Markov chain is a sequence of random variables X 1, X 2, X 3, ... with the Markov property, namely that the probability of moving to the next state depends only on the present state and not on the previous states:
A continuous-time Markov chain (CTMC) is a continuous stochastic process in which, for each state, the process will change state according to an exponential random variable and then move to a different state as specified by the probabilities of a stochastic matrix. An equivalent formulation describes the process as changing state according to ...
A Markov decision process is a Markov chain in which state transitions depend on the current state and an action vector that is applied to the system. Typically, a Markov decision process is used to compute a policy of actions that will maximize some utility with respect to expected rewards.
In 1953 the term Markov chain was used for stochastic processes with discrete or continuous index set, living on a countable or finite state space, see Doob. [1] or Chung. [2] Since the late 20th century it became more popular to consider a Markov chain as a stochastic process with discrete index set, living on a measurable state space. [3] [4] [5]
Kolmogorov's criterion defines the condition for a Markov chain or continuous-time Markov chain to be time-reversible. Time reversal of numerous classes of stochastic processes has been studied, including Lévy processes, [3] stochastic networks (Kelly's lemma), [4] birth and death processes, [5] Markov chains, [6] and piecewise deterministic ...
Consider this figure depicting a section of a Markov chain with states i, j, k and l and the corresponding transition probabilities. Here Kolmogorov's criterion implies that the product of probabilities when traversing through any closed loop must be equal, so the product around the loop i to j to l to k returning to i must be equal to the loop the other way round,
A terminating Markov chain is a Markov chain where all states are transient, except one which is absorbing. Reordering the states, the transition probability matrix of a terminating Markov chain with m {\displaystyle m} transient states is