Search results
Results from the WOW.Com Content Network
Sound exposure level (SEL) is a logarithmic measure of the sound exposure of a sound relative to a reference value. Sound exposure level, denoted L E and measured in dB , is defined by [ 1 ]
While 1 atm (194 dB peak or 191 dB SPL) [11] [12] is the largest pressure variation an undistorted sound wave can have in Earth's atmosphere (i. e., if the thermodynamic properties of the air are disregarded; in reality, the sound waves become progressively non-linear starting over 150 dB), larger sound waves can be present in other atmospheres ...
However, decibels are a logarithimic scale, so that successive 10 dB increments represent greater increases in loudness. For humans, normal hearing is between −10 dB(HL) and 15 dB(HL), [ 2 ] [ 3 ] although 0 dB from 250 Hz to 8 kHz is deemed to be 'average' normal hearing.
The sound energy density level gives the ratio of a sound incidence as a sound energy value in comparison to the reference level of 1 pPa (= 10 −12 pascals). [2] It is a logarithmic measure of the ratio of two sound energy densities. The unit of the sound energy density level is the decibel (dB), a non-SI unit accepted for use with the SI ...
A graph of the A-, B-, C- and D-weightings across the frequency range 10 Hz – 20 kHz Video illustrating A-weighting by analyzing a sine sweep (contains audio). A-weighting is a form of frequency weighting and the most commonly used of a family of curves defined in the International standard IEC 61672:2003 and various national standards relating to the measurement of sound pressure level. [1]
The threshold of hearing is generally reported in reference to the RMS sound pressure of 20 micropascals, i.e. 0 dB SPL, corresponding to a sound intensity of 0.98 pW/m 2 at 1 atmosphere and 25 °C. [3] It is approximately the quietest sound a young human with undamaged hearing can detect at 1 kHz. [4]
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The decibel originates from methods used to quantify signal loss in telegraph and telephone circuits. Until the mid-1920s, the unit for loss was miles of standard cable (MSC). 1 MSC corresponded to the loss of power over one mile (approximately 1.6 km) of standard telephone cable at a frequency of 5000 radians per second (795.8 Hz), and matched closely the smallest attenuation detectable to a ...