enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Coriolis force - Wikipedia

    en.wikipedia.org/wiki/Coriolis_force

    The horizontal deflection effect is greater near the poles, since the effective rotation rate about a local vertical axis is largest there, and decreases to zero at the equator. Rather than flowing directly from areas of high pressure to low pressure, as they would in a non-rotating system, winds and currents tend to flow to the right of this ...

  3. Centrifugal force - Wikipedia

    en.wikipedia.org/wiki/Centrifugal_force

    Earth's gravity is a bit stronger at the poles than at the equator, because the Earth is not a perfect sphere, so an object at the poles is slightly closer to the center of the Earth than one at the equator; this effect combines with the centrifugal force to produce the observed weight difference. [20]

  4. g-factor (physics) - Wikipedia

    en.wikipedia.org/wiki/G-factor_(physics)

    The spin magnetic moment of a charged, spin-1/2 particle that does not possess any internal structure (a Dirac particle) is given by [1] =, where μ is the spin magnetic moment of the particle, g is the g-factor of the particle, e is the elementary charge, m is the mass of the particle, and S is the spin angular momentum of the particle (with magnitude ħ/2 for Dirac particles).

  5. Tests of general relativity - Wikipedia

    en.wikipedia.org/wiki/Tests_of_general_relativity

    The gravitomagnetic effect in the Cassini radioscience experiment was implicitly postulated by B. Bertotti as having a pure general relativistic origin but its theoretical value has never been tested in the experiment which effectively makes the experimental uncertainty in the measured value of gamma actually larger (by a factor of 10) than 0. ...

  6. g-force - Wikipedia

    en.wikipedia.org/wiki/G-force

    The g-force acting on an object under acceleration can be much greater than 1 g, for example, the dragster pictured at top right can exert a horizontal g-force of 5.3 when accelerating. The g-force acting on an object under acceleration may be downwards, for example when cresting a sharp hill on a roller coaster.

  7. Paramagnetism - Wikipedia

    en.wikipedia.org/wiki/Paramagnetism

    Where is the z-component of the magnetic moment for each Zeeman level, so = is called the Bohr magneton and g J is the Landé g-factor, which reduces to the free-electron g-factor, g S when J = S. (in this treatment, we assume that the x - and y -components of the magnetization, averaged over all molecules, cancel out because the field applied ...

  8. Equivalence principle - Wikipedia

    en.wikipedia.org/wiki/Equivalence_principle

    The equivalence principle is the hypothesis that the observed equivalence of gravitational and inertial mass is a consequence of nature. The weak form, known for centuries, relates to masses of any composition in free fall taking the same trajectories and landing at identical times.

  9. Introduction to general relativity - Wikipedia

    en.wikipedia.org/wiki/Introduction_to_general...

    Here, G is the gravitational constant of Newtonian gravity, and c is the speed of light from special relativity. This equation is often referred to in the plural as Einstein's equations, since the quantities G and T are each determined by several functions of the coordinates of spacetime, and the equations equate each of these component ...