Search results
Results from the WOW.Com Content Network
The hippocampus regulates memory function. Memory improvement is the act of enhancing one's memory. Factors motivating research on improving memory include conditions such as amnesia, age-related memory loss, people’s desire to enhance their memory, and the search to determine factors that impact memory and cognition.
Neuroplasticity is the ability of your brain to make new neural pathways, and change the ones that already exist, in response to changes in your behavior and environment.
Two molecular mechanisms for synaptic plasticity involve the NMDA and AMPA glutamate receptors. Opening of NMDA channels (which relates to the level of cellular depolarization) leads to a rise in post-synaptic Ca 2+ concentration and this has been linked to long-term potentiation, LTP (as well as to protein kinase activation); strong depolarization of the post-synaptic cell completely ...
The science of neuroplasticity and the brain is the basis of our clinically proven brain training exercises. How the brain changes Brain plasticity science is the study of a physical process.
Neuroplasticity, also known as neural plasticity or just plasticity, is the ability of neural networks in the brain to change through growth and reorganization. Neuroplasticity refers to the brain's ability to reorganize and rewire its neural connections, enabling it to adapt and function in ways that differ from its prior state.
The book is a collection of stories of doctors and patients showing that the human brain is capable of undergoing change, including stories of recovering use of paralyzed body parts, deaf people learning to hear, and others getting relief from pain using exercises to retrain neural pathways.
After a month of training one hour per day, he can juggle three clubs, his reaction time has reduced from 0.9 seconds to 0.5 seconds with an accuracy increase from 62% to 98%, and his attentional blink test accuracy increased from 64% to 95%. Merzenich says Todd's brain is "responding about as fast as it humanly possible to respond".
In 1973, M. M. Taylor [1] suggested that if synapses were strengthened for which a presynaptic spike occurred just before a postsynaptic spike more often than the reverse (Hebbian learning), while with the opposite timing or in the absence of a closely timed presynaptic spike, synapses were weakened (anti-Hebbian learning), the result would be an informationally efficient recoding of input ...