Search results
Results from the WOW.Com Content Network
The radar ground stations determine the position of the vehicle C-band transponder by measuring range, azimuth angle, and elevation angle. Range is derived from pulse travel time, and angle tracking is accomplished by amplitude-comparison monopulse techniques. As many as four radar stations may track the beacon simultaneously.
The AN/AWG-9 offers multiple air-to-air modes: long-range continuous-wave radar velocity search, range-while-search at shorter ranges, and an airborne track-while-scan mode with the ability to track up to 24 airborne targets, display 18 of them on the cockpit displays, and launch against 6 of them at the same time. This function was originally ...
Radar engineering is the design of technical aspects pertaining to the components of a radar and their ability to detect the return energy from moving scatterers — determining an object's position or obstruction in the environment.
A plan position indicator (PPI) is a type of radar display that represents the radar antenna in the center of the display, with the distance from it and height above ground drawn as concentric circles. As the radar antenna rotates, a radial trace on the PPI sweeps in unison with it about the center point. It is the most common type of radar ...
The radar "looks" with the looking angle θ (or so called off-nadir angle). The angle α between x-axis and the line of sight (LOS) is called cone angle, the angle φ between the x-axis and the projection of the line of sight to the (x; y)-plane is called azimuth angle. Cone- and azimuth angle are related by cosα = cosφ ∙ cosε.
In 1954, [2] McGill University obtained a new radar (CPS-9) which had a better resolution and used FASE (Fast Azimuth Slow Elevation) to program multi-angle soundings of the atmosphere. In 1957, Langleben and Gaherty developed a scheme with FASE to keep only the data at a certain height at each angle and scan on 360 degrees.
Radar angels are an effect seen on radar displays when there is a periodic structure in the view of the radar that is roughly the same length as the signal's wavelength.The angel appears to be a physically huge object on the display, often miles across, that can obscure real targets.
Diagram of AN/SPY-3 vertical electronic pencil beam radar conex projections. X band functionality (8 to 12 GHz frequency range) is optimal for minimizing low-altitude propagation effects, narrow beam width for best tracking accuracy, wide frequency bandwidth for effective target discrimination, and the target illumination for SM-2 and Evolved Sea Sparrow Missiles (ESSM).