Search results
Results from the WOW.Com Content Network
where μ is the electric dipole moment of the effectively polarized water molecule (2.35 D for the SPC/E model), μ 0 is the dipole moment of an isolated water molecule (1.85 D from experiment), and α i is an isotropic polarizability constant, with a value of 1.608 × 10 −40 F·m 2. Since the charges in the model are constant, this ...
Polarizability increases down on columns of the periodic table. [9] Likewise, larger molecules are generally more polarizable than smaller ones. Water is a very polar molecule, but alkanes and other hydrophobic molecules are more polarizable. Water with its permanent dipole is less likely to change shape due to an external electric field.
For example, nine of the nineteen L-amino acids naturally occurring in proteins are, despite the L- prefix, actually dextrorotary (at a wavelength of 589 nm), and D-fructose is sometimes called "levulose" because it is levorotary. The D- and L- prefixes describe the molecule as a whole, as do the (+) and (−) prefixes for optical rotation.
The waves propagate over an elliptic-shaped underwater shoal on a plane beach. This example combines several effects of waves and shallow water, including refraction, diffraction, shoaling and weak non-linearity. In fluid dynamics, the Boussinesq approximation for water waves is an approximation valid for weakly non-linear and fairly long waves.
London dispersion forces are also known as 'dispersion forces', 'London forces', or 'instantaneous dipole–induced dipole forces'. The strength of London dispersion forces is proportional to the polarizability of the molecule, which in turn depends on the total number of electrons and the area over which they are spread.
Dispersion of gravity waves on a fluid surface. Phase and group velocity divided by shallow-water phase velocity √ gh as a function of relative depth h / λ. Blue lines (A): phase velocity; Red lines (B): group velocity; Black dashed line (C): phase and group velocity √ gh valid in shallow water.
An art project from the SETI Institute, a nonprofit in Mountain View, California, devoted to searching for life beyond Earth, simulated that scenario over a year ago before a father-daughter team ...
In many materials the polarizability starts to saturate at high values of electric field. This saturation can be modelled by a nonlinear susceptibility. These susceptibilities are important in nonlinear optics and lead to effects such as second-harmonic generation (such as used to convert infrared light into visible light, in green laser pointers).