enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Long short-term memory - Wikipedia

    en.wikipedia.org/wiki/Long_short-term_memory

    In theory, classic RNNs can keep track of arbitrary long-term dependencies in the input sequences. The problem with classic RNNs is computational (or practical) in nature: when training a classic RNN using back-propagation, the long-term gradients which are back-propagated can "vanish", meaning they can tend to zero due to very small numbers creeping into the computations, causing the model to ...

  3. Recurrent neural network - Wikipedia

    en.wikipedia.org/wiki/Recurrent_neural_network

    LSTM works even given long delays between significant events and can handle signals that mix low and high-frequency components. Many applications use stacks of LSTMs, [57] for which it is called "deep LSTM". LSTM can learn to recognize context-sensitive languages unlike previous models based on hidden Markov models (HMM) and similar concepts. [58]

  4. Connectionist temporal classification - Wikipedia

    en.wikipedia.org/wiki/Connectionist_temporal...

    Connectionist temporal classification (CTC) is a type of neural network output and associated scoring function, for training recurrent neural networks (RNNs) such as LSTM networks to tackle sequence problems where the timing is variable.

  5. Time delay neural network - Wikipedia

    en.wikipedia.org/wiki/Time_delay_neural_network

    Video has a temporal dimension that makes a TDNN an ideal solution to analysing motion patterns. An example of this analysis is a combination of vehicle detection and recognizing pedestrians. [ 15 ] When examining videos, subsequent images are fed into the TDNN as input where each image is the next frame in the video.

  6. Time aware long short-term memory - Wikipedia

    en.wikipedia.org/wiki/Time_aware_long_short-term...

    Time Aware LSTM (T-LSTM) is a long short-term memory (LSTM) unit capable of handling irregular time intervals in longitudinal patient records. T-LSTM was developed by researchers from Michigan State University, IBM Research, and Cornell University and was first presented in the Knowledge Discovery and Data Mining (KDD) conference. [1]

  7. Mamba (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Mamba_(deep_learning...

    Operating on byte-sized tokens, transformers scale poorly as every token must "attend" to every other token leading to O(n 2) scaling laws, as a result, Transformers opt to use subword tokenization to reduce the number of tokens in text, however, this leads to very large vocabulary tables and word embeddings.

  8. Gated recurrent unit - Wikipedia

    en.wikipedia.org/wiki/Gated_recurrent_unit

    Gated recurrent units (GRUs) are a gating mechanism in recurrent neural networks, introduced in 2014 by Kyunghyun Cho et al. [1] The GRU is like a long short-term memory (LSTM) with a gating mechanism to input or forget certain features, [2] but lacks a context vector or output gate, resulting in fewer parameters than LSTM. [3]

  9. ELMo - Wikipedia

    en.wikipedia.org/wiki/ELMo

    The first forward LSTM would process "bank" in the context of "She went to the", which would allow it to represent the word to be a location that the subject is going towards. The first backward LSTM would process "bank" in the context of "to withdraw money", which would allow it to disambiguate the word as referring to a financial institution.