Search results
Results from the WOW.Com Content Network
The shear resistance of soil is a result of friction and interlocking of particles, and possibly cementation or bonding of particle contacts. Due to interlocking, particulate material may expand or contract in volume as it is subject to shear strains. If soil expands its volume, the density of particles will decrease and the strength will ...
Resistivity refers to the resistance to conduction of electric currents and affects the rate of corrosion of metal and concrete structures which are buried in soil. [4] These properties vary through the depth of a soil profile, i.e. through soil horizons. Most of these properties determine the aeration of the soil and the ability of water to ...
A cement-modified soil contains a relatively small proportion of Portland cement, less than in ordinary soil-cement. [1] The result is caked or slightly hardened material, similar to a soil, but with improved mechanical properties such as lower plasticity, increased bearing ratio and shear strength, and decreased volume change. The purpose of ...
Mohr–Coulomb theory is a mathematical model (see yield surface) describing the response of brittle materials such as concrete, or rubble piles, to shear stress as well as normal stress. Most of the classical engineering materials follow this rule in at least a portion of their shear failure envelope.
On the other hand, when a granular material starts in a very loose state it may continuously compact instead of dilating under shear. A sample of a material is called dilative if its volume increases with increasing shear and contractive if the volume decreases with increasing shear. [7] [8] Dilatancy is a common feature of soils and sands. Its ...
A general bearing failure occurs when the load on the footing causes large movement of the soil on a shear failure surface which extends away from the footing and up to the soil surface. Calculation of the capacity of the footing in general bearing is based on the size of the footing and the soil properties.
In such situations, if the shear stress reaches the yield limit then the material enters the plastic domain. Figure 2 shows the Tresca–Guest yield surface in two-dimensional stress space, it is a cross section of the prism along the σ 1 , σ 2 {\displaystyle \sigma _{1},\sigma _{2}} plane.
A direct shear test is a laboratory or field test used by geotechnical engineers to measure the shear strength properties of soil [1] [2] or rock [2] material, or of discontinuities in soil or rock masses. [2] [3] The U.S. and U.K. standards defining how the test should be performed are ASTM D 3080, AASHTO T236 and BS 1377-7:1990, respectively.