enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Markov chain - Wikipedia

    en.wikipedia.org/wiki/Markov_chain

    D. G. Champernowne built a Markov chain model of the distribution of income in 1953. [86] Herbert A. Simon and co-author Charles Bonini used a Markov chain model to derive a stationary Yule distribution of firm sizes. [87] Louis Bachelier was the first to observe that stock prices followed a random walk. [88]

  3. Examples of Markov chains - Wikipedia

    en.wikipedia.org/wiki/Examples_of_Markov_chains

    The matrix P represents the weather model in which a sunny day is 90% likely to be followed by another sunny day, and a rainy day is 50% likely to be followed by another rainy day. [4] The columns can be labelled "sunny" and "rainy", and the rows can be labelled in the same order. The above matrix as a graph.

  4. Markov model - Wikipedia

    en.wikipedia.org/wiki/Markov_model

    A Tolerant Markov model (TMM) is a probabilistic-algorithmic Markov chain model. [6] It assigns the probabilities according to a conditioning context that considers the last symbol, from the sequence to occur, as the most probable instead of the true occurring symbol. A TMM can model three different natures: substitutions, additions or deletions.

  5. Variable-order Markov model - Wikipedia

    en.wikipedia.org/wiki/Variable-order_Markov_model

    In the mathematical theory of stochastic processes, variable-order Markov (VOM) models are an important class of models that extend the well known Markov chain models. In contrast to the Markov chain models, where each random variable in a sequence with a Markov property depends on a fixed number of random variables, in VOM models this number of conditioning random variables may vary based on ...

  6. Discrete-time Markov chain - Wikipedia

    en.wikipedia.org/wiki/Discrete-time_Markov_chain

    An example of a stochastic process which is not a Markov chain is the model of a machine which has states A and E and moves to A from either state with 50% chance if it has ever visited A before, and 20% chance if it has never visited A before (leaving a 50% or 80% chance that the machine moves to E).

  7. Hidden Markov model - Wikipedia

    en.wikipedia.org/wiki/Hidden_Markov_model

    Figure 1. Probabilistic parameters of a hidden Markov model (example) X — states y — possible observations a — state transition probabilities b — output probabilities. In its discrete form, a hidden Markov process can be visualized as a generalization of the urn problem with replacement (where each item from the urn is returned to the original urn before the next step). [7]

  8. Category:Markov models - Wikipedia

    en.wikipedia.org/wiki/Category:Markov_models

    Markov chain; Markov chain central limit theorem; Markov chain geostatistics; Markov chain Monte Carlo; Markov partition; Markov property; Markov switching multifractal; Markovian discrimination; Maximum-entropy Markov model; MegaHAL; Models of DNA evolution; MRF optimization via dual decomposition; Multiple sequence alignment

  9. List of statistics articles - Wikipedia

    en.wikipedia.org/wiki/List_of_statistics_articles

    Hidden Markov model; Hidden Markov random field; Hidden semi-Markov model; Hierarchical Bayes model; Hierarchical clustering; Hierarchical hidden Markov model; Hierarchical linear modeling; High-dimensional statistics; Higher-order factor analysis; Higher-order statistics; Hirschman uncertainty; Histogram; Historiometry; History of randomness ...