Search results
Results from the WOW.Com Content Network
The closeness of a match is measured in terms of the number of primitive operations necessary to convert the string into an exact match. This number is called the edit distance between the string and the pattern. The usual primitive operations are: [1] insertion: cot → coat; deletion: coat → cot
Regular Expression Flavor Comparison – Detailed comparison of the most popular regular expression flavors; Regexp Syntax Summary; Online Regular Expression Testing – with support for Java, JavaScript, .Net, PHP, Python and Ruby; Implementing Regular Expressions – series of articles by Russ Cox, author of RE2; Regular Expression Engines
A string-searching algorithm, sometimes called string-matching algorithm, is an algorithm that searches a body of text for portions that match by pattern. A basic example of string searching is when the pattern and the searched text are arrays of elements of an alphabet ( finite set ) Σ.
It combines ideas from Aho–Corasick with the fast matching of the Boyer–Moore string-search algorithm. For a text of length n and maximum pattern length of m, its worst-case running time is O(mn), though the average case is often much better. [2] GNU grep once implemented a string matching algorithm very similar to Commentz-Walter. [3]
P denotes the string to be searched for, called the pattern. Its length is m. S[i] denotes the character at index i of string S, counting from 1. S[i..j] denotes the substring of string S starting at index i and ending at j, inclusive. A prefix of S is a substring S[1..i] for some i in range [1, l], where l is the length of S.
It specifies a limited subset of regular-expression idioms designed to be interoperable, i.e. produce the same effect, in a large number of regular-expression libraries. I-Regexp is also limited to matching, i.e. providing a true or false match between a regular expression and a given piece of text.
To find a single match of a single pattern, the expected time of the algorithm is linear in the combined length of the pattern and text, although its worst-case time complexity is the product of the two lengths. To find multiple matches, the expected time is linear in the input lengths, plus the combined length of all the matches, which could ...
In computer science, an algorithm for matching wildcards (also known as globbing) is useful in comparing text strings that may contain wildcard syntax. [1] Common uses of these algorithms include command-line interfaces, e.g. the Bourne shell [2] or Microsoft Windows command-line [3] or text editor or file manager, as well as the interfaces for some search engines [4] and databases. [5]