Search results
Results from the WOW.Com Content Network
Different texts (and even different parts of this article) adopt slightly different definitions for the negative binomial distribution. They can be distinguished by whether the support starts at k = 0 or at k = r, whether p denotes the probability of a success or of a failure, and whether r represents success or failure, [1] so identifying the specific parametrization used is crucial in any ...
The multinomial distribution, a generalization of the binomial distribution. The multivariate normal distribution, a generalization of the normal distribution. The multivariate t-distribution, a generalization of the Student's t-distribution. The negative multinomial distribution, a generalization of the negative binomial distribution.
When one or more parameter(s) of a distribution are random variables, the compound distribution is the marginal distribution of the variable. Examples: If X | N is a binomial (N,p) random variable, where parameter N is a random variable with negative-binomial (m, r) distribution, then X is distributed as a negative-binomial (m, r/(p + qr)).
Returning to our example, if we pick the Gamma distribution as our prior distribution over the rate of the Poisson distributions, then the posterior predictive is the negative binomial distribution, as can be seen from the table below.
Beta distribution, for a single probability (real number between 0 and 1); conjugate to the Bernoulli distribution and binomial distribution; Gamma distribution, for a non-negative scaling parameter; conjugate to the rate parameter of a Poisson distribution or exponential distribution, the precision (inverse variance) of a normal distribution, etc.
In probability theory and statistics, the binomial distribution with parameters n and p is the discrete probability distribution of the number of successes in a sequence of n independent experiments, each asking a yes–no question, and each with its own Boolean-valued outcome: success (with probability p) or failure (with probability q = 1 − p).
As the examples above show, zero-inflated data can arise as a mixture of two distributions. The first distribution generates zeros. The second distribution, which may be a Poisson distribution, a negative binomial distribution or other count distribution, generates counts, some of which may be zeros.
negative binomial distribution: number of draws before a certain number of failures (incorrectly colored draws) occurs. Occupancy problem: the distribution of the number of occupied urns after the random assignment of k balls into n urns, related to the coupon collector's problem and birthday problem.