Search results
Results from the WOW.Com Content Network
In a medium, light usually does not propagate at a speed equal to c; further, different types of light wave will travel at different speeds. The speed at which the individual crests and troughs of a plane wave (a wave filling the whole space, with only one frequency ) propagate is called the phase velocity v p .
Light exerts physical pressure on objects in its path, a phenomenon which can be deduced by Maxwell's equations, but can be more easily explained by the particle nature of light: photons strike and transfer their momentum. Light pressure is equal to the power of the light beam divided by c, the speed of light.
Light does not deviate when travelling through a homogeneous medium, which has the same refractive index throughout; otherwise, light experiences refraction. Even though a wave front may be bent, (e.g. the waves created by a rock hitting a pond) the individual rays are moving in straight lines. Rectilinear propagation was discovered by Pierre ...
The atoms absorb certain frequencies of the light between emitter and detector/eye, then emit them in all directions. A dark band appears to the detector, due to the radiation scattered out of the light beam. For instance, dark bands in the light emitted by a distant star are due to the atoms in the star's
The electromagnetic wave equation is a second-order partial differential equation that describes the propagation of electromagnetic waves through a medium or in a vacuum. It is a three-dimensional form of the wave equation. The homogeneous form of the equation, written in terms of either the electric field E or the magnetic field B, takes the form:
Line of sight (LoS) propagation from an antenna. Line-of-sight propagation is a characteristic of electromagnetic radiation or acoustic wave propagation which means waves can only travel in a direct visual path from the source to the receiver without obstacles. [1] Electromagnetic transmission includes light emissions traveling in a straight line.
The Huygens–Fresnel principle provides a reasonable basis for understanding and predicting the classical wave propagation of light. However, there are limitations to the principle, namely the same approximations done for deriving the Kirchhoff's diffraction formula and the approximations of near field due to Fresnel.
In this description, the propagation of light is transportation of matter. However by the turn of the century, beginning with Thomas Young 's double-slit experiment in 1801, more evidence in the form of novel experiments on diffraction , interference , and polarization showcased issues with the theory.