enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Repeating decimal - Wikipedia

    en.wikipedia.org/wiki/Repeating_decimal

    The repeating sequence of digits is called "repetend" which has a certain length greater than 0, also called "period". [5] In base 10, a fraction has a repeating decimal if and only if in lowest terms, its denominator has any prime factors besides 2 or 5, or in other words, cannot be expressed as 2 m 5 n, where m and n are non-negative integers.

  3. Transposable integer - Wikipedia

    en.wikipedia.org/wiki/Transposable_integer

    For any integer coprime to 10, its reciprocal is a repeating decimal without any non-recurring digits. E.g. 1 ⁄ 143 = 0. 006993 006993 006993.... While the expression of a single series with vinculum on top is adequate, the intention of the above expression is to show that the six cyclic permutations of 006993 can be obtained from this repeating decimal if we select six consecutive digits ...

  4. Cyclic number - Wikipedia

    en.wikipedia.org/wiki/Cyclic_number

    Cyclic numbers are related to the recurring digital representations of unit fractions.A cyclic number of length L is the digital representation of . 1/(L + 1).Conversely, if the digital period of 1/p (where p is prime) is

  5. Collatz conjecture - Wikipedia

    en.wikipedia.org/wiki/Collatz_conjecture

    As an illustration of this, the parity cycle (1 1 0 0 1 1 0 0) and its sub-cycle (1 1 0 0) are associated to the same fraction ⁠ 5 / 7 ⁠ when reduced to lowest terms. In this context, assuming the validity of the Collatz conjecture implies that (1 0) and (0 1) are the only parity cycles generated by positive whole numbers (1 and 2 ...

  6. Prime reciprocal magic square - Wikipedia

    en.wikipedia.org/wiki/Prime_reciprocal_magic_square

    In contrast with its rows and columns, the diagonals of this square do not sum to 27; however, their mean is 27, as one diagonal adds to 23 while the other adds to 31.. All prime reciprocals in any base with a period will generate magic squares where all rows and columns produce a magic constant, and only a select few will be full, such that their diagonals, rows and columns collectively yield ...

  7. Binary number - Wikipedia

    en.wikipedia.org/wiki/Binary_number

    This is also a repeating binary fraction 0.0 0011... . It may come as a surprise that terminating decimal fractions can have repeating expansions in binary. It is for this reason that many are surprised to discover that 1/10 + ... + 1/10 (addition of 10 numbers) differs from 1 in binary floating point arithmetic. In fact, the only binary ...

  8. Natural number - Wikipedia

    en.wikipedia.org/wiki/Natural_number

    The Ishango bone (on exhibition at the Royal Belgian Institute of Natural Sciences) [8] [9] [10] is believed to have been used 20,000 years ago for natural number arithmetic.

  9. Quadratic irrational number - Wikipedia

    en.wikipedia.org/wiki/Quadratic_irrational_number

    It is entirely analogous to the correspondence between rational numbers and strings of binary digits that have an eventually-repeating tail, which is also provided by the question mark function. Such repeating sequences correspond to periodic orbits of the dyadic transformation (for the binary digits) and the Gauss map h ( x ) = 1 / x − ⌊ 1 ...