Search results
Results from the WOW.Com Content Network
Initial and terminal objects may also be characterized in terms of universal properties and adjoint functors. Let 1 be the discrete category with a single object (denoted by •), and let U : C → 1 be the unique (constant) functor to 1. Then An initial object I in C is a universal morphism from • to U.
Note that because a nullary biproduct will be both terminal (a nullary product) and initial (a nullary coproduct), it will in fact be a zero object. Indeed, the term "zero object" originated in the study of preadditive categories like Ab, where the zero object is the zero group.
Universal constructions are functorial in nature: if one can carry out the construction for every object in a category C then one obtains a functor on C. Furthermore, this functor is a right or left adjoint to the functor U used in the definition of the universal property. [2] Universal properties occur everywhere in mathematics.
Every closed model category has a terminal object by completeness and an initial object by cocompleteness, since these objects are the limit and colimit, respectively, of the empty diagram. Given an object X in the model category, if the unique map from the initial object to X is a cofibration, then X is said to be cofibrant.
The empty set serves as the initial object in Set with empty functions as morphisms. Every singleton is a terminal object, with the functions mapping all elements of the source sets to the single target element as morphisms. There are thus no zero objects in Set. The category Set is complete and co-complete.
The empty set (considered as a topological space) is the initial object of Top; any singleton topological space is a terminal object. There are thus no zero objects in Top. The product in Top is given by the product topology on the Cartesian product. The coproduct is given by the disjoint union of topological spaces.
As a rule of thumb, an equivalence of categories preserves all "categorical" concepts and properties. If F : C → D is an equivalence, then the following statements are all true: the object c of C is an initial object (or terminal object, or zero object), if and only if Fc is an initial object (or terminal object, or zero object) of D
Let T, η, μ be a monad over a category C.The Kleisli category of C is the category C T whose objects and morphisms are given by = (), (,) = (,).That is, every morphism f: X → T Y in C (with codomain TY) can also be regarded as a morphism in C T (but with codomain Y).