Search results
Results from the WOW.Com Content Network
Whereas the peritubular capillaries surround the cortical parts of the tubules, the vasa recta go into the medulla and are closer to the loop of Henle, [1] [2] and leave to ascend to the cortex. [3] [4] Terminations of the vasa recta form the straight venules, branches from the plexuses at the apices of the medullary pyramids.
Peritubular capillaries surround the cortical parts of the proximal and distal tubules, while the vasa recta go into the medulla to approach the loop of Henle. [1] [2] About one-fifth of the blood plasma is filtered into Bowman's capsule as the blood passes through the glomerular capillaries; four-fifths continues into the peritubular capillaries.
The epithelium of the Thick segment is low simple cuboidal epithelium. The epithelium of the Thin segment is simple squamous. [4]They can be distinguished from the vasa recta by the absence of blood, and they can be distinguished from the thick ascending limb by the thickness of the epithelium.
This K + "leak" generates a positive electrochemical potential difference in the lumen. This drives more paracellular reabsorption of Na +, as well as other cations such as magnesium (Mg 2+) and importantly calcium Ca 2+ due to charge repulsion. This is also the part of the tubule that generates Tamm–Horsfall protein.
The collecting duct system of the kidney consists of a series of tubules and ducts that physically connect nephrons to a minor calyx or directly to the renal pelvis.The collecting duct participates in electrolyte and fluid balance through reabsorption and excretion, processes regulated by the hormones aldosterone and vasopressin (antidiuretic hormone).
Note 3: The efferent arterioles do not directly drain into the interlobular vein, but rather they go to the peritubular capillaries first. The efferent arterioles of the juxtamedullary nephron drain into the vasa recta.
These structures include the vasa rectae (both spuria and vera), the venulae rectae, the medullary capillary plexus, the loop of Henle, and the collecting tubule. [1] The renal medulla is hypertonic to the filtrate in the nephron and aids in the reabsorption of water. Blood is filtered in the glomerulus by solute size.
Dynamic changes in glomerular capillary pressure exert both tensile and stretching forces on podocyte foot processes, and can lead to mechanical strain on their cytoskeleton. Concurrently, fluid flow shear stress is generated by the movement of glomerular ultrafiltrate, exerting a tangential force on the surface of these foot processes.