enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cornforth reagent - Wikipedia

    en.wikipedia.org/wiki/Cornforth_reagent

    [2] [3] The Cornforth reagent is a strong oxidizing agent which can convert primary and secondary alcohols to aldehydes and ketones respectively. In its chemical structure and functions it is closely related to other compounds made from hexavalent chromium oxide, such as pyridinium chlorochromate and Collins reagent. Because of their toxicity ...

  3. Aldehyde - Wikipedia

    en.wikipedia.org/wiki/Aldehyde

    Aldehyde structure. In organic chemistry, an aldehyde (/ ˈ æ l d ɪ h aɪ d /) is an organic compound containing a functional group with the structure R−CH=O. [1] The functional group itself (without the "R" side chain) can be referred to as an aldehyde but can also be classified as a formyl group.

  4. Carbonyl group - Wikipedia

    en.wikipedia.org/wiki/Carbonyl_group

    A ketone compound containing a carbonyl group (C=O) For organic chemistry, a carbonyl group is a functional group with the formula C=O, composed of a carbon atom double-bonded to an oxygen atom, and it is divalent at the C atom.

  5. Tollens' reagent - Wikipedia

    en.wikipedia.org/wiki/Tollens'_reagent

    Tollens' test for aldehyde: left side positive (silver mirror), right side negative Ball-and-stick model of the diamminesilver(I) complex. Tollens' reagent (chemical formula ()) is a chemical reagent used to distinguish between aldehydes and ketones along with some alpha-hydroxy ketones which can tautomerize into aldehydes.

  6. Büchner–Curtius–Schlotterbeck reaction - Wikipedia

    en.wikipedia.org/wiki/Büchner–Curtius...

    The Buchner–Curtius–Schlotterbeck reaction is the reaction of aldehydes or ketones with aliphatic diazoalkanes to form homologated ketones. [1] It was first described by Eduard Buchner and Theodor Curtius in 1885 [2] and later by Fritz Schlotterbeck in 1907. [3]

  7. Ketone - Wikipedia

    en.wikipedia.org/wiki/Ketone

    Ketones are trigonal planar around the ketonic carbon, with C–C–O and C–C–C bond angles of approximately 120°. Ketones differ from aldehydes in that the carbonyl group (C=O) is bonded to two carbons within a carbon skeleton. In aldehydes, the carbonyl is bonded to one carbon and one hydrogen and are located at the ends of carbon chains.

  8. Carbonyl allylation - Wikipedia

    en.wikipedia.org/wiki/Carbonyl_allylation

    Carbonyl allylation has been employed in the synthesis of polyketide natural products and other oxygenated molecules with a contiguous array of stereocenters. For example, allylstannanation of a threose-derived aldehyde affords the macrolide antascomicin B, which structurally resembles FK506 and rapamycin, and is a potent binder of FKBP12. [12]

  9. Norrish reaction - Wikipedia

    en.wikipedia.org/wiki/Norrish_reaction

    Typically the more α substituted a ketone is, the more likely the reaction will yield products in this way. [5] [6] The abstraction of an α-proton from the carbonyl fragment may form a ketene and an alkane. The abstraction of a β-proton from the alkyl fragment may form an aldehyde and an alkene. Norrish type I reaction