enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Factorization of polynomials - Wikipedia

    en.wikipedia.org/wiki/Factorization_of_polynomials

    Each () has a finite number of divisors ,, …,,, and, each (+)-tuple where the entry is a divisor of (), that is, a tuple of the form (,, …,,), produces a unique polynomial of degree at most , which can be computed by polynomial interpolation. Each of these polynomials can be tested for being a factor by polynomial division.

  3. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    The polynomial x 2 + cx + d, where a + b = c and ab = d, can be factorized into (x + a)(x + b).. In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind.

  4. Factorization of polynomials over finite fields - Wikipedia

    en.wikipedia.org/wiki/Factorization_of...

    Polynomial factoring algorithms use basic polynomial operations such as products, divisions, gcd, powers of one polynomial modulo another, etc. A multiplication of two polynomials of degree at most n can be done in O(n 2) operations in F q using "classical" arithmetic, or in O(nlog(n) log(log(n)) ) operations in F q using "fast" arithmetic.

  5. FOIL method - Wikipedia

    en.wikipedia.org/wiki/FOIL_method

    The FOIL rule converts a product of two binomials into a sum of four (or fewer, if like terms are then combined) monomials. [6] The reverse process is called factoring or factorization. In particular, if the proof above is read in reverse it illustrates the technique called factoring by grouping.

  6. Fermat's factorization method - Wikipedia

    en.wikipedia.org/wiki/Fermat's_factorization_method

    But observe that if N had a subroot factor above =, Fermat's method would have found it already. Trial division would normally try up to 48,432; but after only four Fermat steps, we need only divide up to 47830, to find a factor or prove primality. This all suggests a combined factoring method.

  7. Pollard's rho algorithm - Wikipedia

    en.wikipedia.org/wiki/Pollard's_rho_algorithm

    If the pseudorandom number = occurring in the Pollard ρ algorithm were an actual random number, it would follow that success would be achieved half the time, by the birthday paradox in () (/) iterations. It is believed that the same analysis applies as well to the actual rho algorithm, but this is a heuristic claim, and rigorous analysis of ...

  8. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    Every positive integer greater than 1 is either the product of two or more integer factors greater than 1, in which case it is a composite number, or it is not, in which case it is a prime number. For example, 15 is a composite number because 15 = 3 · 5 , but 7 is a prime number because it cannot be decomposed in this way.

  9. Pollard's p − 1 algorithm - Wikipedia

    en.wikipedia.org/wiki/Pollard%27s_p_%E2%88%92_1...

    Assume that p − 1, where p is the smallest prime factor of n, can be modelled as a random number of size less than √ n. By the Dickman function , the probability that the largest factor of such a number is less than ( p − 1) 1/ε is roughly ε − ε ; so there is a probability of about 3 −3 = 1/27 that a B value of n 1/6 will yield a ...