Search results
Results from the WOW.Com Content Network
The specific weight, also known as the unit weight (symbol γ, the Greek letter gamma), is a volume-specific quantity defined as the weight W divided by the volume V of a material: = / Equivalently, it may also be formulated as the product of density, ρ, and gravity acceleration, g: = Its unit of measurement in the International System of Units (SI) is newton per cubic metre (N/m 3), with ...
It is also known as the strength-to-weight ratio or strength/weight ratio or strength-to-mass ratio. In fiber or textile applications, tenacity is the usual measure of specific strength. The SI unit for specific strength is Pa ⋅ m 3 / kg , or N ⋅m/kg, which is dimensionally equivalent to m 2 /s 2 , though the latter form is rarely used.
The other and most popular formula is the Dearden and O'Neill formula, which was adopted by IIW in 1967. [4] This formula has been found suitable for predicting hardenability in a large range of commonly used plain carbon and carbon-manganese steels, but not to microalloyed high-strength low-alloy steels or low-alloy Cr-Mo steels.
Knowing the volume of the unit cell of a crystalline material and its formula weight (in daltons), the density can be calculated. One dalton per cubic ångström is equal to a density of 1.660 539 066 60 g/cm 3 .
Molecular weight (M.W.) (for molecular compounds) and formula weight (F.W.) (for non-molecular compounds), are older terms for what is now more correctly called the relative molar mass (M r). [8] This is a dimensionless quantity (i.e., a pure number, without units) equal to the molar mass divided by the molar mass constant .
Mass fraction can also be expressed, with a denominator of 100, as percentage by mass (in commercial contexts often called percentage by weight, abbreviated wt.% or % w/w; see mass versus weight). It is one way of expressing the composition of a mixture in a dimensionless size ; mole fraction (percentage by moles , mol%) and volume fraction ...
The equivalent weight of an element is the mass which combines with or displaces 1.008 gram of hydrogen or 8.0 grams of oxygen or 35.5 grams of chlorine. The equivalent weight of an element is the mass of a mole of the element divided by the element's valence. That is, in grams, the atomic weight of the element divided by the usual valence. [2]
As can be estimated from weight loss and the density , the wear coefficient can also be expressed as: [2] K = 3 H W P L ρ {\displaystyle K={\frac {3HW}{PL\rho }}} As the standard method uses the total volume loss and the total sliding distance, there is a need to define the net steady-state wear coefficient: