Search results
Results from the WOW.Com Content Network
In computer science, pattern matching is the act of checking a given sequence of tokens for the presence of the constituents of some pattern. In contrast to pattern recognition , the match usually has to be exact: "either it will or will not be a match."
A regex search scans the text of each page on Wikipedia in real time, character by character, to find pages that match a specific sequence or pattern of characters. Unlike keyword searching, regex searching is by default case-sensitive, does not ignore punctuation, and operates directly on the page source (MediaWiki markup) rather than on the ...
Blue highlights show the match results of the regular expression pattern: /r[aeiou]+/ g (lower case r followed by one or more lower-case vowels). A regular expression (shortened as regex or regexp ), [ 1 ] sometimes referred to as rational expression , [ 2 ] [ 3 ] is a sequence of characters that specifies a match pattern in text .
The best case is the same as for the Boyer–Moore string-search algorithm in big O notation, although the constant overhead of initialization and for each loop is less. The worst case behavior happens when the bad character skip is consistently low (with the lower limit of 1 byte movement) and a large portion of the needle matches the haystack.
The Rete algorithm is widely used to implement matching functionality within pattern-matching engines that exploit a match-resolve-act cycle to support forward chaining and inferencing. It provides a means for many–many matching, an important feature when many or all possible solutions in a search network must be found.
In computer science, an algorithm for matching wildcards (also known as globbing) is useful in comparing text strings that may contain wildcard syntax. [1] Common uses of these algorithms include command-line interfaces, e.g. the Bourne shell [2] or Microsoft Windows command-line [3] or text editor or file manager, as well as the interfaces for some search engines [4] and databases. [5]
Generalizations of the same idea can be used to find more than one match of a single pattern, or to find matches for more than one pattern. To find a single match of a single pattern, the expected time of the algorithm is linear in the combined length of the pattern and text, although its worst-case time complexity is the product of the two ...
This uses information gleaned during the pre-processing of the pattern in conjunction with suffix match lengths recorded at each match attempt. Storing suffix match lengths requires an additional table equal in size to the text being searched. The Raita algorithm improves the performance of Boyer–Moore–Horspool algorithm. The searching ...