Search results
Results from the WOW.Com Content Network
For a quadratic classifier, the correct solution is assumed to be quadratic in the measurements, so y will be decided based on + + In the special case where each observation consists of two measurements, this means that the surfaces separating the classes will be conic sections (i.e., either a line , a circle or ellipse , a parabola or a ...
Linear discriminant analysis (LDA), normal discriminant analysis (NDA), canonical variates analysis (CVA), or discriminant function analysis is a generalization of Fisher's linear discriminant, a method used in statistics and other fields, to find a linear combination of features that characterizes or separates two or more classes of objects or ...
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
The quadratic programming problem with n variables and m constraints can be formulated as follows. [2] Given: a real-valued, n-dimensional vector c, an n×n-dimensional real symmetric matrix Q, an m×n-dimensional real matrix A, and; an m-dimensional real vector b, the objective of quadratic programming is to find an n-dimensional vector x ...
There are related questions for real quadratic fields and for the behavior as . The difficulty is in effective computation of bounds: for a given discriminant, it is easy to compute the class number, and there are several ineffective lower bounds on class number (meaning that they involve a constant that is not computed), but effective bounds ...
The probability content of the multivariate normal in a quadratic domain defined by () = ′ + ′ + > (where is a matrix, is a vector, and is a scalar), which is relevant for Bayesian classification/decision theory using Gaussian discriminant analysis, is given by the generalized chi-squared distribution. [17]
For quadratic equations with rational coefficients, if the discriminant is a square number, then the roots are rational—in other cases they may be quadratic irrationals. If the discriminant is zero, then there is exactly one real root − b 2 a , {\displaystyle -{\frac {b}{2a}},} sometimes called a repeated or double root or two equal roots.
Optimal Discriminant Analysis (ODA) [1] and the related classification tree analysis (CTA) are exact statistical methods that maximize predictive accuracy. For any specific sample and exploratory or confirmatory hypothesis, optimal discriminant analysis (ODA) identifies the statistical model that yields maximum predictive accuracy, assesses the ...