Ad
related to: rational approximation continued fractionseducation.com has been visited by 100K+ users in the past month
Education.com is great and resourceful - MrsChettyLife
- 20,000+ Worksheets
Browse by grade or topic to find
the perfect printable worksheet.
- Education.com Blog
See what's new on Education.com,
explore classroom ideas, & more.
- 20,000+ Worksheets
Search results
Results from the WOW.Com Content Network
A continued fraction is a mathematical expression that can be written as a fraction with a denominator that is a sum that contains another simple or continued fraction. Depending on whether this iteration terminates with a simple fraction or not, the continued fraction is finite or infinite .
A property of continued fractions is that truncating the expansion of a given number at any point will give the "best rational approximation" to the number. To obtain Milü, truncate the continued fraction expansion of π immediately before the term 292; that is, π is approximated by the finite continued fraction [3; 7, 15, 1] , which is ...
Every finite continued fraction represents a rational number, and every rational number can be represented in precisely two different ways as a finite continued fraction, with the conditions that the first coefficient is an integer and the other coefficients are positive integers. These two representations agree except in their final terms.
A best approximation for the second definition is also a best approximation for the first one, but the converse is not true in general. [4] The theory of continued fractions allows us to compute the best approximations of a real number: for the second definition, they are the convergents of its expression as a regular continued fraction.
In his Essai sur la théorie des nombres (1798), Adrien-Marie Legendre derives a necessary and sufficient condition for a rational number to be a convergent of the simple continued fraction of a given real number. [4] A consequence of this criterion, often called Legendre's theorem within the study of continued fractions, is as follows: [5 ...
If the roots are real, there is an alternative technique that obtains a rational approximation to one of the roots by manipulating the equation directly. The method works in many cases, and long ago it stimulated further development of the analytical theory of continued fractions.
The continued fraction representation of π can be used to generate successive best rational approximations. These approximations are the best possible rational approximations of π relative to the size of their denominators. Here is a list of the first thirteen of these: [87] [88]
Farey sequences are very useful to find rational approximations of irrational numbers. [12] For example, the construction by Eliahou [ 13 ] of a lower bound on the length of non-trivial cycles in the 3 x +1 process uses Farey sequences to calculate a continued fraction expansion of the number log 2 (3) .
Ad
related to: rational approximation continued fractionseducation.com has been visited by 100K+ users in the past month
Education.com is great and resourceful - MrsChettyLife