Search results
Results from the WOW.Com Content Network
A continued fraction is a mathematical expression that can be written as a fraction with a denominator that is a sum that contains another simple or continued fraction. Depending on whether this iteration terminates with a simple fraction or not, the continued fraction is finite or infinite.
A simple or regular continued fraction is a continued fraction with numerators all equal one, and denominators built from a sequence {} of integer numbers. The sequence can be finite or infinite, resulting in a finite (or terminated) continued fraction like
Periodic continued fractions are in one-to-one correspondence with the real quadratic irrationals. The correspondence is explicitly provided by Minkowski's question-mark function. That article also reviews tools that make it easy to work with such continued fractions. Consider first the purely periodic part
This last non-simple continued fraction (sequence A110185 in the OEIS), equivalent to = [;,,,,,...], has a quicker convergence rate compared to Euler's continued fraction formula [clarification needed] and is a special case of a general formula for the exponential function:
The first term is an integer, and every fraction in the sum is actually an integer because n ≤ b for each term. Therefore, under the assumption that e is rational, x is an integer. We now prove that 0 < x < 1. First, to prove that x is strictly positive, we insert the above series representation of e into the definition of x and obtain =!
A best approximation for the second definition is also a best approximation for the first one, but the converse is not true in general. [4] The theory of continued fractions allows us to compute the best approximations of a real number: for the second definition, they are the convergents of its expression as a regular continued fraction.
The circumference of a circle with diameter 1 is π.. A mathematical constant is a number whose value is fixed by an unambiguous definition, often referred to by a special symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems. [1]
The Klein continued fraction for = (Golden Ratio) with the Klein polyhedra encoding the odd terms in blue and the Klein polyhedra encoding the even terms in red. Suppose α > 0 {\displaystyle \textstyle \alpha >0} is an irrational number.