Search results
Results from the WOW.Com Content Network
In arithmetic, Euclidean division – or division with remainder – is the process of dividing one integer (the dividend) by another (the divisor), in a way that produces an integer quotient and a natural number remainder strictly smaller than the absolute value of the divisor. A fundamental property is that the quotient and the remainder ...
Given an integer a and a non-zero integer d, it can be shown that there exist unique integers q and r, such that a = qd + r and 0 ≤ r < | d |. The number q is called the quotient, while r is called the remainder. (For a proof of this result, see Euclidean division. For algorithms describing how to calculate the remainder, see division algorithm.)
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
The +, -, and * operators for mathematical addition, subtraction, and multiplication are similar to other languages, but the behavior of division differs. There are two types of divisions in Python: floor division (or integer division) // and floating-point/division. [101] Python uses the ** operator for exponentiation.
Python supports normal floating point numbers, which are created when a dot is used in a literal (e.g. 1.1), when an integer and a floating point number are used in an expression, or as a result of some mathematical operations ("true division" via the / operator, or exponentiation with a negative exponent).
Since the norm is a nonnegative integer and decreases with every step, the Euclidean algorithm for Gaussian integers ends in a finite number of steps. [144] The final nonzero remainder is gcd(α, β), the Gaussian integer of largest norm that divides both α and β; it is unique up to multiplication by a unit, ±1 or ±i. [145]
In mathematics, the result of the modulo operation is an equivalence class, and any member of the class may be chosen as representative; however, the usual representative is the least positive residue, the smallest non-negative integer that belongs to that class (i.e., the remainder of the Euclidean division). [2]
An example of the trial division algorithm, using successive integers as trial factors, is as follows (in Python): def trial_division ( n : int ) -> list [ int ]: """Return a list of the prime factors for a natural number.""" a = [] # Prepare an empty list. f = 2 # The first possible factor.