Search results
Results from the WOW.Com Content Network
The power factor in a single-phase circuit (or balanced three-phase circuit) can be measured with the wattmeter-ammeter-voltmeter method, where the power in watts is divided by the product of measured voltage and current. The power factor of a balanced polyphase circuit is the same as that of any phase. The power factor of an unbalanced ...
A large power transformer used in the electrical grid may have efficiency of more than 99%. Early 19th century transformers were much less efficient, wasting up to a third of the energy passing through them. [citation needed] A steam power plant used to generate electricity may have 30-40% efficiency. [citation needed]
To express the efficiency of a generator or power plant as a percentage, invert the value if dimensionless notation or same unit are used. For example: A heat rate value of 5 gives an efficiency factor of 20%. A heat rate value of 2 kWh/kWh gives an efficiency factor of 50%. A heat rate value of 4 MJ/MJ gives an efficiency factor of 25%.
Efficiency of power plants, world total, 2008. Energy conversion efficiency (η) is the ratio between the useful output of an energy conversion machine and the input, in energy terms. The input, as well as the useful output may be chemical, electric power, mechanical work, light (radiation), or heat.
The fill factor is directly affected by the values of the cell's series, shunt resistances and diodes losses. Increasing the shunt resistance (R sh) and decreasing the series resistance (R s) lead to a higher fill factor, thus resulting in greater efficiency, and bringing the cell's output power closer to its theoretical maximum. [22]
For a given power supply, efficiency varies depending on how much power is being delivered. Supplies are typically most efficient at between half and three-quarters load, much less efficient at low load, and somewhat less efficient at maximum load. Older ATX power supplies were typically 60% to 75% efficient. To qualify for 80 Plus, a power ...
Gas turbines do have an advantage in power density – gas turbines are used as the engines in heavy armored vehicles and armored tanks and in power generators in jet fighters. One other factor negatively affecting the gas turbine efficiency is the ambient air temperature.
In electrical engineering the load factor is defined as the average load divided by the peak load in a specified time period. [1] It is a measure of the utilization rate, or efficiency of electrical energy usage; a high load factor indicates that load is using the electric system more efficiently, whereas consumers or generators that underutilize the electric distribution will have a low load ...