enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Zermelo set theory - Wikipedia

    en.wikipedia.org/wiki/Zermelo_set_theory

    Zermelo set theory (sometimes denoted by Z-), as set out in a seminal paper in 1908 by Ernst Zermelo, is the ancestor of modern Zermelo–Fraenkel set theory (ZF) and its extensions, such as von Neumann–Bernays–Gödel set theory (NBG). It bears certain differences from its descendants, which are not always understood, and are frequently ...

  3. Zermelo–Fraenkel set theory - Wikipedia

    en.wikipedia.org/wiki/ZermeloFraenkel_set_theory

    Specifically, Zermelo–Fraenkel set theory does not allow for the existence of a universal set (a set containing all sets) nor for unrestricted comprehension, thereby avoiding Russell's paradox. Von Neumann–Bernays–Gödel set theory (NBG) is a commonly used conservative extension of Zermelo–Fraenkel set theory that does allow explicit ...

  4. Well-ordering theorem - Wikipedia

    en.wikipedia.org/wiki/Well-ordering_theorem

    The well-ordering theorem together with Zorn's lemma are the most important mathematical statements that are equivalent to the axiom of choice (often called AC, see also Axiom of choice § Equivalents). [1] [2] Ernst Zermelo introduced the axiom of choice as an "unobjectionable logical principle" to prove the well-ordering theorem. [3]

  5. Ernst Zermelo - Wikipedia

    en.wikipedia.org/wiki/Ernst_Zermelo

    Ernst Friedrich Ferdinand Zermelo (/ z ɜːr ˈ m ɛ l oʊ /, German: [tsɛɐ̯ˈmeːlo]; 27 July 1871 – 21 May 1953) was a German logician and mathematician, whose work has major implications for the foundations of mathematics. He is known for his role in developing Zermelo–Fraenkel axiomatic set theory and his proof of the well-ordering ...

  6. Axiom of infinity - Wikipedia

    en.wikipedia.org/wiki/Axiom_of_infinity

    In axiomatic set theory and the branches of mathematics and philosophy that use it, the axiom of infinity is one of the axioms of Zermelo–Fraenkel set theory. It guarantees the existence of at least one infinite set, namely a set containing the natural numbers. It was first published by Ernst Zermelo as part of his set theory in 1908. [1]

  7. Von Neumann universe - Wikipedia

    en.wikipedia.org/wiki/Von_Neumann_universe

    The first publication of the von Neumann universe was by Ernst Zermelo in 1930. [7] Existence and uniqueness of the general transfinite recursive definition of sets was demonstrated in 1928 by von Neumann for both Zermelo-Fraenkel set theory [16] and von Neumann's own set theory (which later developed into NBG set theory). [17]

  8. List of statements independent of ZFC - Wikipedia

    en.wikipedia.org/wiki/List_of_statements...

    The mathematical statements discussed below are provably independent of ZFC (the canonical axiomatic set theory of contemporary mathematics, consisting of the Zermelo–Fraenkel axioms plus the axiom of choice), assuming that ZFC is consistent. A statement is independent of ZFC (sometimes phrased "undecidable in ZFC") if it can neither be ...

  9. Set-theoretic definition of natural numbers - Wikipedia

    en.wikipedia.org/wiki/Set-theoretic_definition...

    In Zermelo–Fraenkel (ZF) set theory, the natural numbers are defined recursively by letting 0 = {} be the empty set and n + 1 (the successor function) = n ∪ {n} for each n. In this way n = {0, 1, …, n − 1} for each natural number n. This definition has the property that n is a set with n elements.