Search results
Results from the WOW.Com Content Network
The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...
For a substance X with a specific volume of 0.657 cm 3 /g and a substance Y with a specific volume 0.374 cm 3 /g, the density of each substance can be found by taking the inverse of the specific volume; therefore, substance X has a density of 1.522 g/cm 3 and substance Y has a density of 2.673 g/cm 3. With this information, the specific ...
[1] Compressed natural gas (CNG), for example, is a gas rather than a liquid. It can be measured by its volume in standard cubic feet (ft 3) at atmospheric conditions, by its weight in pounds (lb), or by its energy content in joules (J), British thermal units (BTU), or kilowatt-hours (kW·h). CNG sold at filling stations in the US is priced in ...
For some usage examples, consider the conversion of 1 SCCM to kg/s of a gas of molecular weight , where is in kg/kmol. Furthermore, consider standard conditions of 101325 Pa and 273.15 K, and assume the gas is an ideal gas (i.e., =).
For example, such a regulation might limit the concentration of NOx to 55 ppmv in a dry combustion exhaust gas corrected to 3 volume percent O 2. As another example, a regulation might limit the concentration of particulate matter to 0.1 grain per standard cubic foot (i.e., scf) of dry exhaust gas corrected to 12 volume percent CO 2.
Mass fraction can also be expressed, with a denominator of 100, as percentage by mass (in commercial contexts often called percentage by weight, abbreviated wt.% or % w/w; see mass versus weight). It is one way of expressing the composition of a mixture in a dimensionless size ; mole fraction (percentage by moles , mol%) and volume fraction ...
= 10 parts per million by volume = 10 ppmv = 10 volumes/10 6 volumes NO x molar mass = 46 kg/kmol = 46 g/mol Flow rate of flue gas = 20 cubic metres per minute = 20 m 3 /min The flue gas exits the furnace at 0 °C temperature and 101.325 kPa absolute pressure. The molar volume of a gas at 0 °C temperature and 101.325 kPa is 22.414 m 3 /kmol.
It is the same concept as volume percent (vol%) except that the latter is expressed with a denominator of 100, e.g., 18%. The volume fraction coincides with the volume concentration in ideal solutions where the volumes of the constituents are additive (the volume of the solution is equal to the sum of the volumes of its ingredients).