Search results
Results from the WOW.Com Content Network
Radiation is often categorized as either ionizing or non-ionizing depending on the energy of the radiated particles. Ionizing radiation carries more than 10 electron volts (eV), which is enough to ionize atoms and molecules and break chemical bonds. This is an important distinction due to the large difference in harmfulness to living organisms.
Natural background radiation comes from five primary sources: cosmic radiation, solar radiation, external terrestrial sources, radiation in the human body, and radon. The background rate for natural radiation varies considerably with location, being as low as 1.5 mSv/a (1.5 mSv per year) in some areas and over 100 mSv/a in others.
Generally, electromagnetic radiation is classified by wavelength into radio wave, microwave, infrared, visible light, ultraviolet, X-rays and gamma rays. The behavior of EM radiation depends on its wavelength. When EM radiation interacts with single atoms and molecules, its behavior also depends on the amount of energy per quantum (photon) it ...
Solar radiation pressure strongly affects comet tails. Solar heating causes gases to be released from the comet nucleus, which also carry away dust grains. Radiation pressure and solar wind then drive the dust and gases away from the Sun's direction. The gases form a generally straight tail, while slower moving dust particles create a broader ...
Radioactive decay is a random process at the level of single atoms. According to quantum theory, it is impossible to predict when a particular atom will decay, regardless of how long the atom has existed. [2] [3] [4] However, for a significant number of identical atoms, the overall decay rate can be expressed as a decay constant or as a half-life.
Crystallography employs the scattering of high energy radiation, such as x-rays and electrons, to examine the arrangement of atoms in proteins and solid crystals. Impedance spectroscopy : Impedance is the ability of a medium to impede or slow the transmittance of energy.
Nevertheless, when there are many identical atoms decaying (right boxes), the law of large numbers suggests that it is a very good approximation to say that half of the atoms remain after one half-life. Various simple exercises can demonstrate probabilistic decay, for example involving flipping coins or running a statistical computer program ...
In a group of such atoms, if the number of atoms in the excited state is given by N 2, the rate at which stimulated emission occurs is given by = = where the proportionality constant B 21 is known as the Einstein B coefficient for that particular transition, and ρ(ν) is the radiation density of the incident field at frequency ν.