Search results
Results from the WOW.Com Content Network
A uniform color space (UCS) is a color model that seeks to make the color-making attributes perceptually uniform, i.e. identical spatial distance between two colors equals identical amount of perceived color difference. A CAM under a fixed viewing condition results in a UCS; a UCS with a modeling of variable viewing conditions results in a CAM.
The familiar CIE (x, y) chromaticity diagram is very perceptually non-uniform: small perceptual changes in chromaticity in greens, for example, translate into large distances, while larger perceptual differences in chromaticity in other colors are usually much smaller.
RGB (red, green, blue) describes the chromaticity component of a given color, when excluding luminance. RGB itself is not a color space, it is a color model. There are many different color spaces that employ this color model to describe their chromaticities because the R/G/B chromaticities are one facet for reproducing color in CRT & LED displays.
For example, the white point of an sRGB display is an x, y chromaticity of (0.3127, 0.3290), where x and y coordinates are used in the xyY space. ( u′ , v′ ) , the chromaticity in CIELUV , is a fairly perceptually uniform presentation of the chromaticity as (another than in CIE 1931) planar Euclidean shape.
The Planckian locus on the MacAdam (u, v) chromaticity diagram. The normals are lines of equal correlated color temperature. The CIE 1960 color space ("CIE 1960 UCS", variously expanded Uniform Color Space, Uniform Color Scale, Uniform Chromaticity Scale, Uniform Chromaticity Space) is another name for the (u, v) chromaticity space devised by David MacAdam.
CIELUV is an Adams chromatic valence color space and is an update of the CIE 1964 (U*, V*, W*) color space (CIEUVW). The differences include a slightly modified lightness scale and a modified uniform chromaticity scale, in which one of the coordinates, v′, is 1.5 times as large as v in its 1960 predecessor.
A comparison between a typical normalized M cone's spectral sensitivity and the CIE 1931 luminosity function for a standard observer in photopic vision. In the CIE 1931 model, Y is the luminance, Z is quasi-equal to blue (of CIE RGB), and X is a mix of the three CIE RGB curves chosen to be nonnegative (see § Definition of the CIE XYZ color space).
The International Commission on Illumination (CIE) developed the XYZ model for describing the colors of light spectra in 1931, but its goal was to match human visual metamerism, rather than to be perceptually uniform, geometrically. In the 1960s and 1970s, attempts were made to transform XYZ colors into a more relevant geometry, influenced by ...