Search results
Results from the WOW.Com Content Network
ESBWR's passive safety systems include a combination of three systems that allow for the efficient transfer of decay heat (created from nuclear decay) from the reactor to pools of water outside containment – the Isolation Condenser System, the Gravity Driven Cooling System, and the Passive Containment Cooling System. These systems utilize ...
The Automatic Depressurization System (ADS) consists of a series of valves which open to vent steam several feet under the surface of a large pool of liquid water (known as the wetwell or torus) in pressure suppression type containments (typically used in boiling water reactor designs), or directly into the primary containment structure in ...
The Reactor Protection System (RPS) is a system, computerized in later BWR models, that is designed to automatically, rapidly, and completely shut down and make safe the Nuclear Steam Supply System (NSSS – the reactor pressure vessel, pumps, and water/steam piping within the containment) if some event occurs that could result in the reactor entering an unsafe operating condition.
The GE Mark III Containment-system is a single barrier pressure containment and multi-barrier fission containment system, consisting of the containment vessel plus associated dry- and wetwell (pressure and fission barriers), the external shield building of it, the auxiliary building and the fuel building, all of which are normally kept at ...
Eighteen SORVs (safety overpressure relief valves), eight of which are part of the ADS (automatic depressurization system), ensure that RPV overpressure events are quickly mitigated, and that if necessary, that the reactor can be depressurized rapidly to a level where low pressure core flooder (LPCF, the high-capacity mode of the residual heat ...
Steam enters the IC condenser and condenses until it is filled with water. When the IC system is activated, a valve at the bottom of the IC condenser is opened which connects to a lower area on the reactor. The water falls to the reactor via gravity, allowing the condenser to fill with steam, which then condenses.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Rod motion is performed using rod drive control systems. Newer BWRs such as the ABWR and ESBWR as well as all German and Swedish BWRs use the Fine Motion Control Rod Drive system, which allows multiple rods to be controlled with very smooth motions. This allows a reactor operator to evenly increase the core's reactivity until the reactor is ...