Search results
Results from the WOW.Com Content Network
In trigonometry, trigonometric identities are equalities that involve trigonometric functions and are true for every value of the occurring variables for which both sides of the equality are defined.
The y-axis ordinates of A, B and D are sin θ, tan θ and csc θ, respectively, while the x-axis abscissas of A, C and E are cos θ, cot θ and sec θ, respectively. Signs of trigonometric functions in each quadrant. Mnemonics like "all students take calculus" indicates when sine, cosine, and tangent are positive from quadrants I to IV. [8]
The graph y = x 1/3 illustrates the first possibility: here the difference quotient at a = 0 is equal to h 1/3 /h = h −2/3, which becomes very large as h approaches 0. This curve has a tangent line at the origin that is vertical. The graph y = x 2/3 illustrates another possibility: this graph has a cusp at the origin.
Graph of the tangent-function tan(x). One period from -½π to ½π is drawn. x- and y-axis have the same units. All labels are embedded in "Computer Modern" font.
There are several equivalent ways for defining trigonometric functions, and the proofs of the trigonometric identities between them depend on the chosen definition. The oldest and most elementary definitions are based on the geometry of right triangles and the ratio between their sides.
This point crosses the y-axis at some point y = t. One can show using simple geometry that t = tan(φ/2). The equation for the drawn line is y = (1 + x)t. The equation for the intersection of the line and circle is then a quadratic equation involving t. The two solutions to this equation are (−1, 0) and (cos φ, sin φ).
Trigonometry (from Ancient Greek τρίγωνον (trígōnon) 'triangle' and μέτρον (métron) 'measure') [1] is a branch of mathematics concerned with relationships between angles and side lengths of triangles.
All derivatives of circular trigonometric functions can be found from those of sin(x) and cos(x) by means of the quotient rule applied to functions such as tan(x) = sin(x)/cos(x). Knowing these derivatives, the derivatives of the inverse trigonometric functions are found using implicit differentiation.