Search results
Results from the WOW.Com Content Network
The Hawking singularity theorem is based on the Penrose theorem and it is interpreted as a gravitational singularity in the Big Bang situation. Penrose shared half of the Nobel Prize in Physics in 2020 "for the discovery that black hole formation is a robust prediction of the general theory of relativity".
The Large Scale Structure of Space–Time is a 1973 treatise on the theoretical physics of spacetime by the physicist Stephen Hawking and the mathematician George Ellis. [1] It is intended for specialists in general relativity rather than newcomers.
General relativity predicts that any object collapsing beyond a certain point (for stars this is the Schwarzschild radius) would form a black hole, inside which a singularity (covered by an event horizon) would be formed. [2] The Penrose–Hawking singularity theorems define a singularity to have geodesics that cannot be extended in a smooth ...
He has received several prizes and awards, including the 1988 Wolf Prize in Physics, which he shared with Stephen Hawking for the Penrose–Hawking singularity theorems, [6] and the 2020 Nobel Prize in Physics "for the discovery that black hole formation is a robust prediction of the general theory of relativity".
In general relativity, the Raychaudhuri equation, or Landau–Raychaudhuri equation, [1] is a fundamental result describing the motion of nearby bits of matter.. The equation is important as a fundamental lemma for the Penrose–Hawking singularity theorems and for the study of exact solutions in general relativity, but has independent interest, since it offers a simple and general validation ...
In general relativity, it was noted that, under fairly generic conditions, gravitational collapse will inevitably result in a so-called singularity. A singularity is a point where the solutions to the equations become infinite, indicating that the theory has been probed at inappropriate ranges.
In 1991, John Preskill and Kip Thorne bet against Stephen Hawking that the hypothesis was false. Hawking conceded the bet in 1997, due to the discovery of the special situations just mentioned, which he characterized as "technicalities". Hawking later reformulated the bet to exclude those technicalities.
Any boundary to spacetime is a form of singularity, where the smooth nature of spacetime breaks down. [1]: 769–772 With all such singularities removed from the Universe, it thus can have no boundary and Stephen Hawking speculated that "the boundary condition to the Universe is that it has no boundary". [2]: 85