Search results
Results from the WOW.Com Content Network
In any triangle, the distance along the boundary of the triangle from a vertex to the point on the opposite edge touched by an excircle equals the semiperimeter.. The semiperimeter is used most often for triangles; the formula for the semiperimeter of a triangle with side lengths a, b, c
Let ABC be a triangle with side lengths a, b, and c, with a 2 + b 2 = c 2. Construct a second triangle with sides of length a and b containing a right angle. By the Pythagorean theorem, it follows that the hypotenuse of this triangle has length c = √ a 2 + b 2, the same as the hypotenuse of the first triangle.
The formulas show how to transform any right triangle with integer legs into another right triangle with integer legs whose hypotenuse is the square of the first triangle's hypotenuse. A Pythagorean prime is a prime number of the form 4 n + 1 {\displaystyle 4n+1} .
As a consequence of the Pythagorean theorem, the hypotenuse is the longest side of any right triangle; that is, the hypotenuse is longer than either of the triangle's legs. For example, given the length of the legs a = 5 and b = 12, then the sum of the legs squared is (5 × 5) + (12 × 12) = 169, the square of the hypotenuse. The length of the ...
[4] [6] The first three of these define the primitive Pythagorean triples (the ones in which the two sides and hypotenuse have no common factor), derive the standard formula for generating all primitive Pythagorean triples, compute the inradius of Pythagorean triangles, and construct all triangles with sides of length at most 100. [6] Chapter 4 ...
A triangle with sides a, b, and c. In geometry, Heron's formula (or Hero's formula) gives the area of a triangle in terms of the three side lengths , , . Letting be the semiperimeter of the triangle, = (+ +), the area is [1]
Set square shaped as 45° - 45° - 90° triangle The side lengths of a 45° - 45° - 90° triangle 45° - 45° - 90° right triangle of hypotenuse length 1.. In plane geometry, dividing a square along its diagonal results in two isosceles right triangles, each with one right angle (90°, π / 2 radians) and two other congruent angles each measuring half of a right angle (45°, or ...
A right triangle ABC with its right angle at C, hypotenuse c, and legs a and b,. A right triangle or right-angled triangle, sometimes called an orthogonal triangle or rectangular triangle, is a triangle in which two sides are perpendicular, forming a right angle (1 ⁄ 4 turn or 90 degrees).