Search results
Results from the WOW.Com Content Network
In probability theory, a probability space or a probability triple (,,) is a mathematical construct that provides a formal model of a random process or "experiment". For example, one can define a probability space which models the throwing of a die. A probability space consists of three elements: [1] [2]
A probability space is a measure space with a probability measure. For measure spaces that are also topological spaces various compatibility conditions can be placed for the measure and the topology. Most measures met in practice in analysis (and in many cases also in probability theory) are Radon measures.
Probability is the branch of mathematics and statistics concerning events and numerical descriptions of how likely they are to occur. The probability of an event is a number between 0 and 1; the larger the probability, the more likely an event is to occur. [note 1] [1] [2] This number is often expressed as a percentage (%), ranging from 0% to ...
That is, the probability function f(x) lies between zero and one for every value of x in the sample space Ω, and the sum of f(x) over all values x in the sample space Ω is equal to 1. An event is defined as any subset E {\displaystyle E\,} of the sample space Ω {\displaystyle \Omega \,} .
A well-defined, non-empty sample space is one of three components in a probabilistic model (a probability space). The other two basic elements are a well-defined set of possible events (an event space), which is typically the power set of S {\displaystyle S} if S {\displaystyle S} is discrete or a σ-algebra on S {\displaystyle S} if it is ...
Every probability measure on a standard measurable space leads to a standard probability space. The product of a sequence (finite or not) of standard probability spaces is a standard probability space. All non-atomic standard probability spaces are mutually isomorphic mod 0; one of them is the interval (0,1) with the Lebesgue measure.
The product of two standard probability spaces is a standard probability space. The same holds for the product of countably many spaces, see (Rokhlin 1952, Sect. 3.4), (Haezendonck 1973, Proposition 12), and (Itô 1984, Theorem 2.4.3). A measurable subset of a standard probability space is a standard probability space.
The concept of probability function is made more rigorous by defining it as the element of a probability space (,,), where is the set of possible outcomes, is the set of all subsets whose probability can be measured, and is the probability function, or probability measure, that assigns a probability to each of these measurable subsets .