Search results
Results from the WOW.Com Content Network
In physics, a characteristic length is an important dimension that defines the scale of a physical system. Often, such a length is used as an input to a formula in order to predict some characteristics of the system, and it is usually required by the construction of a dimensionless quantity, in the general framework of dimensional analysis and in particular applications such as fluid mechanics.
The dimension of a physical quantity can be expressed as a product of the base physical dimensions such as length, mass and time, each raised to an integer (and occasionally rational) power. The dimension of a physical quantity is more fundamental than some scale or unit used to express the amount of
The angle incremented in a plane by a segment connecting an object and a reference point per unit time rad/s T −1: bivector Area: A: Extent of a surface m 2: L 2: extensive, bivector or scalar Centrifugal force: F c: Inertial force that appears to act on all objects when viewed in a rotating frame of reference: N⋅rad = kg⋅m⋅rad⋅s −2 ...
Aside from the Orthographic, six standard principal views (Front; Right Side; Left Side; Top; Bottom; Rear), descriptive geometry strives to yield four basic solution views: the true length of a line (i.e., full size, not foreshortened), the point view (end view) of a line, the true shape of a plane (i.e., full size to scale, or not ...
A graphical or bar scale. A map would also usually give its scale numerically ("1:50,000", for instance, means that one cm on the map represents 50,000cm of real space, which is 500 meters) A bar scale with the nominal scale expressed as "1:600 000", meaning 1 cm on the map corresponds to 600,000 cm=6 km on the ground.
If the triangle is graphed on a coordinate plane, a matrix can be used and is simplified to the absolute value of (+ +). This formula is also known as the shoelace formula and is an easy way to solve for the area of a coordinate triangle by substituting the 3 points (x 1 ,y 1 ) , (x 2 ,y 2 ) , and (x 3 ,y 3 ) .
Plane orthogonal to line L and including the origin. Point B is the origin. Line L passes through point D and is orthogonal to the plane of the picture. The two planes pass through CD and DE and are both orthogonal to the plane of the picture.
In a Cartesian plane, one can define canonical representatives of certain geometric figures, such as the unit circle (with radius equal to the length unit, and center at the origin), the unit square (whose diagonal has endpoints at (0, 0) and (1, 1)), the unit hyperbola, and so on. The two axes divide the plane into four right angles, called ...